Quantum secret sharing protocol based on four-dimensional three-particle entangled states

In this paper, we proposed a three-party quantum secret sharing (QSS) scheme using four-dimensional three-particle entangled states. In this QSS scheme, each agent can obtain a shadow of the secret key by performing single-particle measurements. Compared with the existing QSS protocol, this scheme has high efficiency and can resist the eavesdropping attack and entangle-measuring attack, which using three-particle entangled states are based on four-dimensional Hilbert space.

[1]  D. Markham,et al.  Quantum secret sharing with qudit graph states , 2010, 1004.4619.

[2]  Guang-Can Guo,et al.  Quantum secret sharing without entanglement , 2002 .

[3]  G. Long,et al.  General scheme for superdense coding between multiparties , 2001, quant-ph/0110112.

[4]  Fei Gao,et al.  Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping” , 2007 .

[5]  Kyo Inoue,et al.  Quantum secret sharing based on modulated high-dimensional time-bin entanglement , 2006 .

[6]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[7]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[8]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[9]  M. Żukowski,et al.  Security of Quantum Key Distribution with entangled Qutrits. , 2002, quant-ph/0207057.

[10]  Jeong San Kim,et al.  Three-party d-level quantum secret sharing protocol , 2007, 0801.0177.

[11]  Xiu-Bo Chen,et al.  An efficient and secure multiparty quantum secret sharing scheme based on single photons , 2008 .

[12]  V. Karimipour,et al.  Quantum secret sharing based on reusable GHZ states as secure carriers , 2002, quant-ph/0204124.

[13]  Z. Man,et al.  Multiparty quantum secret sharing of classical messages based on entanglement swapping , 2004, quant-ph/0406103.

[14]  A Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[15]  D. Bruß,et al.  Optimal eavesdropping in cryptography with three-dimensional quantum states. , 2001, Physical review letters.

[16]  Wen Qiao-Yan,et al.  Three-party quantum secret sharing of secure direct communication based on χ -type entangled states , 2010 .

[17]  Matthias Christandl,et al.  Quantum cryptography based on qutrit Bell inequalities , 2003 .

[18]  Daowen Qiu,et al.  Quantum secret sharing with classical Bobs , 2013 .

[19]  Tzonelih Hwang,et al.  On "multiparty quantum secret sharing with Bell states and Bell measurements" , 2010 .

[20]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[21]  Qin Li,et al.  Semiquantum secret sharing using entangled states , 2009, 0906.1866.

[22]  Xiu-Bo Chen,et al.  Multiparty quantum secret sharing based on Bell measurement , 2009 .

[23]  A. Klappenecker,et al.  Sharing classical secrets with Calderbank-Shor-Steane codes , 2009 .

[24]  Daowen Qiu,et al.  Quantum secret sharing of multi-bits by an entangled six-qubit state , 2012 .

[25]  Chun-Wei Yang,et al.  Intercept-Resend Attacks on Semi-quantum Secret Sharing and the Improvements , 2011, ArXiv.

[26]  Chun-Wei Yang,et al.  Dynamic quantum secret sharing protocol based on GHZ state , 2014, Quantum Inf. Process..

[27]  H Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[28]  Ting Gao,et al.  Addendum to "Quantum secret sharing between multiparty and multiparty without entanglement" , 2005 .

[29]  Fuguo Deng,et al.  Efficient high-capacity quantum secret sharing with two-photon entanglement , 2006, quant-ph/0602160.

[30]  Sudhir Kumar Singh,et al.  Generalized quantum secret sharing , 2003, quant-ph/0307200.