The Inverse Power Method for the p ( x ) -Laplacian Problem

We present an inverse power method for the computation of the first homogeneous eigenpair of the p(x)-Laplacian problem. The operators are discretized by the finite element method. The inner minimization problems are solved by a globally convergent inexact Newton method. Numerical comparisons are made, in oneand two-dimensional domains, with other results present in literature for the constant case p(x)≡ p and with other minimization techniques (namely, the nonlinear conjugate gradient) for the p(x) variable case.

[1]  Goro Akagi,et al.  Nonlinear diffusion equations driven by the p(·)-Laplacian , 2012, Nonlinear Differential Equations and Applications NoDEA.

[2]  R. Glowinski,et al.  APPROXIMATION OF A NONLINEAR ELLIPTIC PROBLEM ARISING IN A NON-NEWTONIAN FLUID FLOW MODEL IN GLACIOLOGY , 2003 .

[3]  Bernhard Kawohl,et al.  On a familiy of torsional creep problems. , 1990 .

[4]  Gabriella Bognár,et al.  Numerical-analytic investigation of theradially symmetric solutions for some nonlinear PDEs , 2005 .

[5]  Peter Lindqvist,et al.  An eigenvalue problem with variable exponents , 2012, 1210.1397.

[6]  Qihu Zhang,et al.  Eigenvalues of p(x)-Laplacian Dirichlet problem , 2005 .

[7]  Rodney Josué Biezuner,et al.  Computing the sinp function via the inverse power method , 2011, Comput. Methods Appl. Math..

[8]  E. Acerbi,et al.  Regularity results for a class of quasiconvex functionals with nonstandard growth , 2001 .

[9]  Tamás Szabó,et al.  Solving nonlinear eigenvalue problems by using p-version of FEM , 2003 .

[10]  Giuseppe Mingione,et al.  Gradient estimates for the p (x)-Laplacean system , 2005 .

[11]  Jesús Ildefonso Díaz Díaz,et al.  On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology , 1997 .

[12]  Peter Hästö,et al.  Overview of differential equations with non-standard growth , 2010 .

[13]  Jesús Ildefonso Díaz Díaz,et al.  On a nonlinear parabolic problem arising in some models related to turbulent flows , 1994 .

[14]  Hassan Fathabadi,et al.  On the solution of p-Laplacian for non-Newtonian fluid flow , 2009 .

[15]  Marco Caliari,et al.  Computing the first eigenpair for problems with variable exponents , 2013 .

[16]  Jed Brown,et al.  Computing the First Eigenpair of the p-Laplacian via Inverse Iteration of Sublinear Supersolutions , 2010, J. Sci. Comput..

[17]  Gabriella Bognár Plenary lecture IV: numerical and analytic investigation of some nonlinear problems in engineering sciences , 2008 .

[18]  D. Joseph,et al.  Principles of non-Newtonian fluid mechanics , 1974 .

[19]  Liancun Zheng,et al.  The Similarity Solution to a Generalized Diffusion Equation with Convection , 2006 .

[20]  Noel J. Walkington,et al.  Diffusion of fluid in a fissured medium with microstructure , 1991 .

[21]  Rodney Josué Biezuner,et al.  Computing the first eigenvalue of the p-Laplacian via the inverse power method. , 2009 .

[22]  Matthias Hein,et al.  An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA , 2010, NIPS.

[23]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[24]  Bernhard Kawohl,et al.  Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant , 2003 .