Using persistent homology to reveal hidden information in neural data

We propose a method, based on persistent homology, to uncover topological properties of a priori unknown covariates of neuron activity. Our input data consist of spike train measurements of a set of neurons of interest, a candidate list of the known stimuli that govern neuron activity, and the corresponding state of the animal throughout the experiment performed. Using a generalized linear model for neuron activity and simple assumptions on the effects of the external stimuli, we infer away any contribution to the observed spike trains by the candidate stimuli. Persistent homology then reveals useful information about any further, unknown, covariates.

[1]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[2]  Gorô Azumaya,et al.  Corrections and Supplementaries to My Paper concerning Krull-Remak-Schmidt’s Theorem , 1950, Nagoya Mathematical Journal.

[3]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[4]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[5]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[6]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[7]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[8]  R. Muller,et al.  A Quarter of a Century of Place Cells , 1996, Neuron.

[9]  E. Save,et al.  Contribution of multiple sensory information to place field stability in hippocampal place cells , 2000, Hippocampus.

[10]  Abubakr Muhammad,et al.  Coverage and hole-detection in sensor networks via homology , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[11]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[12]  Uri T Eden,et al.  A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. , 2005, Journal of neurophysiology.

[13]  J. Jonsson Simplicial complexes of graphs , 2007 .

[14]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[15]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[16]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[17]  Carina Curto,et al.  Cell Groups Reveal Structure of Stimulus Space , 2008, PLoS Comput. Biol..

[18]  Monique Teillaud Proceedings of the twenty-fourth annual symposium on Computational geometry , 2008, SoCG 2008.

[19]  G. Buzsáki,et al.  Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop , 2009, Neuron.

[20]  J. Hertz,et al.  Mean field theory for nonequilibrium network reconstruction. , 2010, Physical review letters.

[21]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[22]  Yuri Dabaghian,et al.  A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology , 2012, PLoS Comput. Biol..

[23]  Matthew Kahle Topology of random simplicial complexes: a survey , 2013, 1301.7165.

[24]  Robert Ghrist,et al.  Elementary Applied Topology , 2014 .

[25]  Herbert Edelsbrunner,et al.  A Short Course in Computational Geometry and Topology , 2014 .

[26]  Nachum Ulanovsky,et al.  Encoding of Head Direction by Hippocampal Place Cells in Bats , 2014, The Journal of Neuroscience.

[27]  Yuri Dabaghian,et al.  The Effects of Theta Precession on Spatial Learning and Simplicial Complex Dynamics in a Topological Model of the Hippocampal Spatial Map , 2014, PLoS Comput. Biol..

[28]  Yasser Roudi,et al.  Correlations and Functional Connections in a Population of Grid Cells , 2014, PLoS Comput. Biol..

[29]  Yasser Roudi,et al.  Multi-neuronal activity and functional connectivity in cell assemblies , 2015, Current Opinion in Neurobiology.

[30]  Y. Roudi,et al.  U.S. stock market interaction network as learned by the Boltzmann machine , 2015, The European Physical Journal B.

[31]  E. Pastalkova,et al.  Clique topology reveals intrinsic geometric structure in neural correlations , 2015, Proceedings of the National Academy of Sciences.

[32]  R. Ho Algebraic Topology , 2022 .