Circular RNA Ubiquitin-associated Protein 2 Silencing Suppresses Bladder Cancer Progression by Downregulating DNA Topoisomerase 2-alpha Through Sponging miR-496.

[1]  Hong Wu,et al.  MiR-599 targeting TOP2A inhibits the malignancy of bladder cancer cells. , 2021, Biochemical and biophysical research communications.

[2]  Burton B. Yang,et al.  Targeting circular RNAs as a therapeutic approach: current strategies and challenges , 2021, Signal Transduction and Targeted Therapy.

[3]  Jun Zhang,et al.  miR-496 inhibits proliferation via LYN and AKT pathway in gastric cancer , 2021, Open medicine.

[4]  Jae-Hwan Jeong,et al.  MicroRNA-496 inhibits triple negative breast cancer cell proliferation by targeting Del-1 , 2019, Medicine.

[5]  Shao-tao Tang,et al.  Circular RNA hsa_circ_0003141 promotes tumorigenesis of hepatocellular carcinoma via a miR-1827/UBAP2 axis , 2020, Aging.

[6]  Xiaoyan Li,et al.  LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis , 2020, Molecular Cancer.

[7]  Hailong Hu,et al.  Downregulated hsa_circ_0077837 and hsa_circ_0004826, facilitate bladder cancer progression and predict poor prognosis for bladder cancer patients , 2020, Cancer medicine.

[8]  Zhibin Wang,et al.  Insights into the regulatory role of circRNA in angiogenesis and clinical implications. , 2020, Atherosclerosis.

[9]  Tianxin Lin,et al.  circRIP2 accelerates bladder cancer progression via miR-1305/Tgf-β2/smad3 pathway , 2020, Molecular Cancer.

[10]  P. Qu,et al.  Long noncoding RNA NNT-AS1 enhances the malignant phenotype of bladder cancer by acting as a competing endogenous RNA on microRNA-496 thereby increasing HMGB1 expression , 2019, Aging.

[11]  Wei Wang,et al.  miR-496 suppress tumorigenesis via targeting BDNF-mediated PI3K/Akt signaling pathway in non-small cell lung cancer. , 2019, Biochemical and biophysical research communications.

[12]  T. Powles,et al.  Molecular and histopathology directed therapy for advanced bladder cancer , 2019, Nature Reviews Urology.

[13]  B. Jiang,et al.  Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN , 2019, Molecular cancer.

[14]  Yinghao Sun,et al.  Prognostic value of TOP2A in bladder urothelial carcinoma and potential molecular mechanisms , 2019, BMC Cancer.

[15]  Chun-Ying Yu,et al.  The emerging roles and functions of circular RNAs and their generation , 2019, Journal of Biomedical Science.

[16]  L. Gu,et al.  Mutual regulation of MDM4 and TOP2A in cancer cell proliferation , 2019, Molecular oncology.

[17]  National Health Commission of PRC Chinese guidelines for diagnosis and treatment of urothelial carcinoma of bladder 2018 (English version) , 2019, Chinese journal of cancer research = Chung-kuo yen cheng yen chiu.

[18]  Fuqing Zeng,et al.  Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis , 2018, Molecular Cancer.

[19]  A. Jemal,et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , 2018, CA: a cancer journal for clinicians.

[20]  Chern Ein Oon,et al.  Molecular targeted therapy: Treating cancer with specificity , 2018, European journal of pharmacology.

[21]  Xiang Li,et al.  The Biogenesis, Functions, and Challenges of Circular RNAs. , 2018, Molecular cell.

[22]  Jingting Jiang,et al.  Function and clinical significance of circRNAs in solid tumors , 2018, Journal of Hematology & Oncology.

[23]  L. Cantley,et al.  A Glycolysis Outsider Steps into the Cancer Spotlight. , 2018, Cell metabolism.

[24]  Yao-fei Pei,et al.  TOP2A induces malignant character of pancreatic cancer through activating β-catenin signaling pathway. , 2018, Biochimica et biophysica acta. Molecular basis of disease.

[25]  R. Dreicer Chemotherapy for advanced urothelial cancer: end of the beginning? , 2017, The Lancet. Oncology.

[26]  Li Yang,et al.  The Biogenesis of Nascent Circular RNAs. , 2016, Cell reports.

[27]  M. Dinger,et al.  Endogenous microRNA sponges: evidence and controversy , 2016, Nature Reviews Genetics.

[28]  J. Locasale,et al.  The Warburg Effect: How Does it Benefit Cancer Cells? , 2016, Trends in biochemical sciences.

[29]  J. Stenvang,et al.  Topoisomerase‐1 and ‐2A gene copy numbers are elevated in mismatch repair‐proficient colorectal cancers , 2015, Molecular oncology.

[30]  A. Fernández-Medarde,et al.  Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[31]  B. Kaina,et al.  The catalytic topoisomerase II inhibitor dexrazoxane induces DNA breaks, ATF3 and the DNA damage response in cancer cells , 2015, British journal of pharmacology.

[32]  Li Yang,et al.  Regulation of circRNA biogenesis , 2015, RNA biology.

[33]  Wei Zhang,et al.  Topoisomerase IIα in Chromosome Instability and Personalized Cancer Therapy , 2014, Oncogene.

[34]  M. Mimmack,et al.  The α isoform of topoisomerase II is required for hypercompaction of mitotic chromosomes in human cells , 2014, Nucleic acids research.

[35]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[36]  Michael K. Slevin,et al.  Circular RNAs are abundant, conserved, and associated with ALU repeats. , 2013, RNA.

[37]  M. V. Vander Heiden,et al.  Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. , 2011, Annual review of cell and developmental biology.

[38]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[39]  M. Mattern,et al.  Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. , 1991, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.