Informational–statistical thermodynamics of a complex system

We apply a statistical–thermodynamic approach to the study of a particular physical system (two sets of nonlinearly coupled oscillators), driven far away from equilibrium. Such a system displays a kind of complex behavior consisting in the so-called Frohlich effect leading in steady-state conditions to a nonequilibrium phase condensation resembling the Bose–Einstein condensation of systems in equilibrium. A kind of “two-fluid model” arises: the “normal nonequilibrium phase” and Frohlich condensate or “nonequilibrium superphase,” which is shown to be an attractor of the system. We work out some aspects of the irreversible thermodynamics of this dissipative complex system. Particular nonlinear properties are discussed and Lyapunov exponents determined. This kind of system gives a good modeling of polar vibration modes in polymers and biopolymers.

[1]  V. Morozov,et al.  Statistical mechanics of nonequilibrium processes , 1996 .

[2]  D. N. Zubarev,et al.  The Method of the Non-Equilibrium Statistical Operator and its Applications. I , 1970 .

[3]  D. Devault,et al.  Biology and Quantum Mechanics , 1984 .

[4]  J. R. Madureira,et al.  Evolution of dissipative processes via a statistical thermodynamic approach. I. Generalized Mori–Heisenberg–Langevin equations , 1998 .

[5]  L. Brillouin,et al.  Science and information theory , 1956 .

[6]  John Skilling,et al.  Maximum Entropy and Bayesian Methods , 1989 .

[7]  A. L. Kuzemsky,et al.  Nonequilibrium Statistical Thermodynamics , 2017 .

[8]  A. Hobson Irreversibility and Information in Mechanical Systems , 1966 .

[9]  M. Scully,et al.  Frontiers of nonequilibrium statistical physics , 1986 .

[10]  D. Jou,et al.  Thermodynamic variables in the context of a nonequilibrium statistical ensemble approach , 1997 .

[11]  S. Hassan,et al.  The informational-statistical-entropy operator in a nonequilibrium ensemble formalism , 1999 .

[12]  F. Dyson,et al.  The New Physics , 1989 .

[13]  G. Nicolis,et al.  Probabilistic and thermodynamic aspects of dynamical systems. , 1998, Chaos.

[14]  Ilya Prigogine,et al.  Introduction to Thermodynamics of Irreversible Processes , 1967 .

[15]  P. Anderson More is different. , 1972, Science.

[16]  John Archibald Wheeler,et al.  At Home in the Universe , 1994 .

[17]  Introductory remarks: thermodynamics today , 1995 .

[18]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[19]  Grégoire Nicolis,et al.  Introduction to Nonlinear Science: References , 1995 .

[20]  Mesquita,et al.  Amplification of coherent polar vibrations in biopolymers: Fröhlich condensate. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  M. A. Tenan,et al.  Statistical‐Mechanical Foundations for a Generalized Thermodynamics of Dissipative Processes , 1997 .

[22]  L. Marton,et al.  Advances in Electronics and Electron Physics , 1958 .

[23]  Murray Gell-Mann,et al.  What is complexity? Remarks on simplicity and complexity by the Nobel Prize-winning author of The Quark and the Jaguar , 1995, Complex..

[24]  Á. R. Vasconcellos,et al.  The basic principles of irreversible thermodynamics in the context of an informational-statistical approach , 1997 .

[25]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[26]  P. Landsberg Photons at non-zero chemical potential , 1981 .

[27]  Á. R. Vasconcellos,et al.  On the Nonequilibrium Statistical Operator Method , 1990 .

[28]  Á. R. Vasconcellos,et al.  On the Statistical Foundations of Irreversible Thermodynamics , 1999 .

[29]  Á. R. Vasconcellos,et al.  A Classical Approach in Predictive Statistical Mechanics: A Generalized Boltzmann Formalism , 1995 .

[30]  H. Fröhlich Long-range coherence and energy storage in biological systems , 1968 .

[31]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[32]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[33]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[34]  E. Jaynes,et al.  E. T. Jaynes: Papers on Probability, Statistics and Statistical Physics , 1983 .

[35]  K. H. Ruddock From theoretical physics to biology , 1974 .

[36]  E. Lorenz Deterministic nonperiodic flow , 1963 .