Locality of the Thomas–Fermi–von Weizsäcker Equations

We establish a pointwise stability estimate for the Thomas–Fermi–von Weiz-säcker (TFW) model, which demonstrates that a local perturbation of a nuclear arrangement results also in a local response in the electron density and electrostatic potential. The proof adapts the arguments for existence and uniqueness of solutions to the TFW equations in the thermodynamic limit by Catto et al. (The mathematical theory of thermodynamic limits: Thomas–Fermi type models. Oxford mathematical monographs. The Clarendon Press, Oxford University Press, New York, 1998). To demonstrate the utility of this combined locality and stability result we derive several consequences, including an exponential convergence rate for the thermodynamic limit, partition of total energy into exponentially localised site energies (and consequently, exponential locality of forces), and generalised and strengthened results on the charge neutrality of local defects.

[1]  V. Ehrlacher,et al.  Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations , 2013, 1306.5334.

[2]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[3]  N. H. March,et al.  The many-body problem in quantum mechanics , 1968 .

[4]  L. Thomas,et al.  Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators , 1973 .

[5]  L. G. Il’chenko,et al.  Screening of charges and Friedel oscillations of the electron density in metals having differently shaped Fermi surfaces , 1978 .

[6]  J. P. Solovej Universality in the Thomas-Fermi-von Weizsäcker model of atoms and molecules , 1990 .

[7]  Michele Benzi,et al.  Decay Properties of Spectral Projectors with Applications to Electronic Structure , 2012, SIAM Rev..

[8]  Engineering,et al.  Energy density in density functional theory: Application to crystalline defects and surfaces , 2010, 1011.4683.

[9]  Nagy,et al.  Partially linearized Thomas-Fermi-Weizsäcker theory for screening and stopping of charged particles in jellium. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[10]  V. Ehrlacher,et al.  Local Defects are Always Neutral in the Thomas–Fermi–von Weiszäcker Theory of Crystals , 2010, 1007.2603.

[11]  Christoph Ortner,et al.  QM/MM Methods for Crystalline Defects. Part 2: Consistent Energy and Force-Mixing , 2015, Multiscale Model. Simul..

[12]  L. Muñoz,et al.  ”QUANTUM THEORY OF SOLIDS” , 2009 .

[13]  L. Evans Measure theory and fine properties of functions , 1992 .

[14]  E. Lieb,et al.  The Thomas-Fermi theory of atoms, molecules and solids , 1977 .

[15]  Shmuel Agmon,et al.  Lectures on exponential decay of solutions of second order elliptic equations : bounds on eigenfunctions of N-body Schrödinger operators , 1983 .

[16]  E. Lieb Thomas-fermi and related theories of atoms and molecules , 1981 .

[17]  E. Lieb,et al.  The Thomas-Fermi-von Weizsäcker theory of atoms and molecules , 1981 .

[18]  Walter Kohn NEARSIGHTEDNESS OF ELECTRONIC MATTER , 2008 .

[19]  Thierry Aubin,et al.  Nonlinear analysis on manifolds, Monge-Ampère equations , 1982 .

[20]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[21]  G. V. Chester,et al.  Solid State Physics , 2000 .

[22]  C. Poole,et al.  Encyclopedic Dictionary of Condensed Matter Physics , 2004 .

[23]  Huan-Song Zhou,et al.  Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$ , 2007 .

[24]  X. Blanc Unique Solvability of a System of Nonlinear Elliptic PDEs Arising in Solid State Physics , 2006, SIAM J. Math. Anal..

[25]  Sohrab Ismail-Beigi,et al.  LOCALITY OF THE DENSITY MATRIX IN METALS, SEMICONDUCTORS, AND INSULATORS , 1999 .

[26]  R. Resta Thomas-Fermi dielectric screening in semiconductors , 1977 .

[27]  Mathieu Lewin,et al.  The Dielectric Permittivity of Crystals in the Reduced Hartree–Fock Approximation , 2009, 0903.1944.

[28]  E. Lieb,et al.  Long range atomic potentials in Thomas-Fermi theory , 1979 .

[29]  Fukun Zhao,et al.  On the existence of solutions for the Schrödinger-Poisson equations , 2008 .

[30]  Florian Theil,et al.  Justification of the Cauchy–Born Approximation of Elastodynamics , 2013 .

[31]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[32]  Pierre-Louis Lions,et al.  The Mathematical Theory of Thermodynamic Limits: Thomas--Fermi Type Models , 1998 .

[33]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[34]  N. Trudinger Linear elliptic operators with measurable coe cients , 1973 .

[35]  Mike C. Payne,et al.  Multiscale hybrid simulation methods for material systems , 2005 .

[36]  N. H. March,et al.  Electron density theory of atoms and molecules , 1982 .

[37]  R. Bader Atoms in molecules , 1990 .

[38]  L. Evans,et al.  Partial Differential Equations , 1941 .

[39]  F. Nazar Convergence Rates from Yukawa to Coulomb Interaction in the Thomas-Fermi-von Weizs\"acker Model , 2016, 1601.01187.

[40]  Emmanuel Hebey,et al.  Nonlinear analysis on manifolds , 1999 .