Locality of the Thomas–Fermi–von Weizsäcker Equations
暂无分享,去创建一个
[1] V. Ehrlacher,et al. Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations , 2013, 1306.5334.
[2] C. Schmeiser,et al. Semiconductor equations , 1990 .
[3] N. H. March,et al. The many-body problem in quantum mechanics , 1968 .
[4] L. Thomas,et al. Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators , 1973 .
[5] L. G. Il’chenko,et al. Screening of charges and Friedel oscillations of the electron density in metals having differently shaped Fermi surfaces , 1978 .
[6] J. P. Solovej. Universality in the Thomas-Fermi-von Weizsäcker model of atoms and molecules , 1990 .
[7] Michele Benzi,et al. Decay Properties of Spectral Projectors with Applications to Electronic Structure , 2012, SIAM Rev..
[8] Engineering,et al. Energy density in density functional theory: Application to crystalline defects and surfaces , 2010, 1011.4683.
[9] Nagy,et al. Partially linearized Thomas-Fermi-Weizsäcker theory for screening and stopping of charged particles in jellium. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[10] V. Ehrlacher,et al. Local Defects are Always Neutral in the Thomas–Fermi–von Weiszäcker Theory of Crystals , 2010, 1007.2603.
[11] Christoph Ortner,et al. QM/MM Methods for Crystalline Defects. Part 2: Consistent Energy and Force-Mixing , 2015, Multiscale Model. Simul..
[12] L. Muñoz,et al. ”QUANTUM THEORY OF SOLIDS” , 2009 .
[13] L. Evans. Measure theory and fine properties of functions , 1992 .
[14] E. Lieb,et al. The Thomas-Fermi theory of atoms, molecules and solids , 1977 .
[15] Shmuel Agmon,et al. Lectures on exponential decay of solutions of second order elliptic equations : bounds on eigenfunctions of N-body Schrödinger operators , 1983 .
[16] E. Lieb. Thomas-fermi and related theories of atoms and molecules , 1981 .
[17] E. Lieb,et al. The Thomas-Fermi-von Weizsäcker theory of atoms and molecules , 1981 .
[18] Walter Kohn. NEARSIGHTEDNESS OF ELECTRONIC MATTER , 2008 .
[19] Thierry Aubin,et al. Nonlinear analysis on manifolds, Monge-Ampère equations , 1982 .
[20] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[21] G. V. Chester,et al. Solid State Physics , 2000 .
[22] C. Poole,et al. Encyclopedic Dictionary of Condensed Matter Physics , 2004 .
[23] Huan-Song Zhou,et al. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$ , 2007 .
[24] X. Blanc. Unique Solvability of a System of Nonlinear Elliptic PDEs Arising in Solid State Physics , 2006, SIAM J. Math. Anal..
[25] Sohrab Ismail-Beigi,et al. LOCALITY OF THE DENSITY MATRIX IN METALS, SEMICONDUCTORS, AND INSULATORS , 1999 .
[26] R. Resta. Thomas-Fermi dielectric screening in semiconductors , 1977 .
[27] Mathieu Lewin,et al. The Dielectric Permittivity of Crystals in the Reduced Hartree–Fock Approximation , 2009, 0903.1944.
[28] E. Lieb,et al. Long range atomic potentials in Thomas-Fermi theory , 1979 .
[29] Fukun Zhao,et al. On the existence of solutions for the Schrödinger-Poisson equations , 2008 .
[30] Florian Theil,et al. Justification of the Cauchy–Born Approximation of Elastodynamics , 2013 .
[31] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[32] Pierre-Louis Lions,et al. The Mathematical Theory of Thermodynamic Limits: Thomas--Fermi Type Models , 1998 .
[33] S. Goedecker. Linear scaling electronic structure methods , 1999 .
[34] N. Trudinger. Linear elliptic operators with measurable coe cients , 1973 .
[35] Mike C. Payne,et al. Multiscale hybrid simulation methods for material systems , 2005 .
[36] N. H. March,et al. Electron density theory of atoms and molecules , 1982 .
[37] R. Bader. Atoms in molecules , 1990 .
[38] L. Evans,et al. Partial Differential Equations , 1941 .
[39] F. Nazar. Convergence Rates from Yukawa to Coulomb Interaction in the Thomas-Fermi-von Weizs\"acker Model , 2016, 1601.01187.
[40] Emmanuel Hebey,et al. Nonlinear analysis on manifolds , 1999 .