Relaxing the optimality conditions of box QP
暂无分享,去创建一个
[1] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[2] Kurt M. Anstreicher,et al. Institute for Mathematical Physics Semidefinite Programming versus the Reformulation–linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming Semidefinite Programming versus the Reformulation-linearization Technique for Nonconvex Quadratically Constrained , 2022 .
[3] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[4] Panos M. Pardalos,et al. Quadratic Programming with Box Constraints , 1997 .
[5] Henry Wolkowicz,et al. Handbook of Semidefinite Programming , 2000 .
[6] Johan Efberg,et al. YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .
[7] Abul Hasan Siddiqi,et al. Trends in Industrial and Applied Mathematics , 2011 .
[8] Yinyu Ye,et al. Approximating quadratic programming with bound and quadratic constraints , 1999, Math. Program..
[9] Panos M. Pardalos,et al. GLOBAL OPTIMIZATION ALGORITHMS FOR LINEARLY CONSTRAINED INDEFINITE QUADRATIC PROBLEMS , 1991 .
[10] Warren P. Adams,et al. A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .
[11] Aimo A. Törn,et al. Global Optimization , 1999, Science.
[12] Samuel Burer,et al. Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound , 2009, Comput. Optim. Appl..
[13] P. Toint,et al. Numerical Methods for Large-Scale Non-Convex Quadratic Programming , 2002 .
[14] George L. Nemhauser,et al. A branch-and-cut algorithm for nonconvex quadratic programs with box constraints , 2005, Math. Program..
[15] Panos M. Pardalos,et al. Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..
[16] M. Er. Quadratic optimization problems in robust beamforming , 1990 .
[17] Y. Nesterov. Global quadratic optimization via conic relaxation , 1998 .
[18] George L. Nemhauser,et al. A polyhedral study of nonconvex quadratic programs with box constraints , 2005, Math. Program..
[19] Tibor Csendes,et al. Developments in Global Optimization , 1997 .