The evolutionary implications of mobile genetic elements.

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Evolutionary Hypotheses . .. . . . .. . . . .. . . ..... . . . . . . . . . ........ . . . .. . ....... . . .... . ... . .. . . . . General Considerations .. . . .............. . . . ....... ........ . ... . . . . . ...... . ............ . . . . . . ... . BACTERIAL INSERTION SEQUENCES ..................................................... . . Self-Regulation of ISJO and IS50 Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Effect of IS Insertion on Gene Expression ............................................ . . Growth Competition Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TRANSPOSONS IN yEAST ...................................................................... .

[1]  E. Mayr Animal Species and Evolution , 1964 .

[2]  E. Lin,et al.  Evolution of a Catabolic Pathway in Bacteria , 1964, Science.

[3]  E. Lin,et al.  Mutants of Aerobacter aerogenes Capable of Utilizing Xylitol as a Novel Carbon , 1968, Journal of bacteriology.

[4]  T. T. Wu,et al.  Mutants of Aerobacter aerogenes Capable of Utilizing Xylitol as a Novel Carbon , 1968 .

[5]  E. Cox,et al.  Fitness of an Escherichia coli Mutator Gene , 1970, Science.

[6]  A. Wilson,et al.  The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein, and anatomical evolution. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[7]  G. Todaro,et al.  Evolution of C-type viral genes: inheritance of exogenously acquired viral genes , 1974, Nature.

[8]  S. Stanley A theory of evolution above the species level. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Stanley N Cohen Transposable genetic elements and plasmid evolution , 1976, Nature.

[10]  E. Cox Bacterial mutator genes and the control of spontaneous mutation. , 1976, Annual review of genetics.

[11]  D. Reanney Extrachromosomal elements as possible agents of adaptation and development. , 1976, Bacteriological reviews.

[12]  A. Hacking,et al.  Experimental Models of Acquisitive Evolution , 1976 .

[13]  S. Gould,et al.  Punctuated equilibria: the tempo and mode of evolution reconsidered , 1977, Paleobiology.

[14]  A. Wilson,et al.  Rapid speciation and chromosomal evolution in mammals. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[15]  L. Lin,et al.  Increased reproductive fitness of Escherichia coli lambda lysogens , 1977, Journal of virology.

[16]  G. Dougan,et al.  Analysis of sequences transposed by complementation of two classes of transposition-deficient mutants of Tn3 , 1978, Journal of bacteriology.

[17]  F. Heffron,et al.  In vitro mutagenesis of a circular DNA molecule by using synthetic restriction sites. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. W. Young,et al.  Middle repetitive DNA: a fluid component of the Drosophila genome. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Shapiro Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Botchan,et al.  Integration and excision of SV40 DNA from the chromosome of a transformed cell , 1980, Cell.

[21]  M. Zenilman,et al.  Plasmids containing insertion elements are potential transposons. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[22]  O. Smithies,et al.  A mouse α-globin-related pseudogene lacking intervening sequences , 1980, Nature.

[23]  P. Starlinger IS elements and transposons. , 1980, Plasmid.

[24]  P. Leder,et al.  Mouse globin system: a functional and evolutionary analysis. , 1980, Science.

[25]  F. Crick,et al.  Selfish DNA: the ultimate parasite , 1980, Nature.

[26]  E. Dubois,et al.  Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes , 1980, Cell.

[27]  A. Weiner,et al.  Direct repeats flank three small nuclear RNA pseudogenes in the human genome , 1981, Cell.

[28]  G. Rubin,et al.  Drosophila genome organization: conserved and dynamic aspects. , 1981, Annual review of genetics.

[29]  M. W. Young,et al.  Nomadic gene families in Drosophila. , 1981, Cold Spring Harbor symposia on quantitative biology.

[30]  M. Ciriacy,et al.  Transposable elements associated with constitutive expression of yeast alcohol dehydrogenase II , 1981, Cell.

[31]  N. Glansdorff,et al.  Activation of gene expression by IS2 and IS3. , 1981, Cold Spring Harbor symposia on quantitative biology.

[32]  A. Wright,et al.  Insertion of DNA activates the cryptic bgl operon in E. coli K12 , 1981, Nature.

[33]  I. Purdom,et al.  Conserved sex-chromosome-associated nucleotide sequences in eukaryotes. , 1981, Cold Spring Harbor symposia on quantitative biology.

[34]  Genes are things you have whether you want them or not. , 1981, Cold Spring Harbor symposia on quantitative biology.

[35]  G. Rubin,et al.  FB elements are the common basis for the instability of the w DZL and w c Drosophila mutations , 1982, Cell.

[36]  G. Rubin,et al.  Transposition of cloned P elements into Drosophila germ line chromosomes. , 1982, Science.

[37]  R. Garrett,et al.  The primary structures of two leghemoglobin genes from soybean. , 1982, Nucleic acids research.

[38]  G. Rubin,et al.  The molecular basis of P-M hybrid dysgenesis: The role of the P element, a P-strain-specific transposon family , 1982, Cell.

[39]  G. Fink,et al.  Movement of yeast transposable elements by gene conversion. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Roth,et al.  Transposon Tn10 provides a promoter for transcription of adjacent sequences. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[41]  W. Reznikoff Tn5 transposition and its regulation , 1982, Cell.

[42]  David W. Miller,et al.  A virus mutant with an insertion of a copia-like transposable element , 1982, Nature.

[43]  D. Hinton,et al.  Transcription initiation sites within an IS2 insertion in a Gal-constitutive mutant of Escherichia coli. , 1982, Nucleic acids research.

[44]  R. Lewin Can genes jump between eukaryotic species? , 1982, Science.

[45]  M. Syvanen,et al.  Regulation of Tn5 by the right-repeat proteins: Control at the level of the transposition reaction? , 1982, Cell.

[46]  J. Stringer DNA sequence homology and chromosomal deletion at a site of SV40 DNA integration , 1982, Nature.

[47]  D. Hickey Selfish DNA: a sexually-transmitted nuclear parasite. , 1982, Genetics.

[48]  W. Reznikoff,et al.  Control of Tn5 transposition in Escherichia coli is mediated by protein from the right repeat , 1982, Cell.

[49]  Nancy Kleckner,et al.  Translational control of IS10 transposition , 1983, Cell.

[50]  D. Hartl,et al.  Evolution of transposons: natural selection for Tn5 in Escherichia coli K12. , 1983, Genetics.

[51]  Nancy Kleckner,et al.  Three promoters near the termini of IS10: pIN, pOUT, and pIII , 1983, Cell.

[52]  L. Chao,et al.  COMPETITION BETWEEN HIGH AND LOW MUTATING STRAINS OF ESCHERICHIA COLI , 1983, Evolution; international journal of organic evolution.

[53]  W. McGinnis,et al.  A transposable element inserted just 5′ to a Drosophila glue protein gene alters gene expression and chromatin structure , 1983, Cell.

[54]  Edward C. Cox,et al.  Transposable elements as mutator genes in evolution , 1983, Nature.

[55]  Mobile Genetic Elements , 1983 .

[56]  M. G. Kidwell Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. G. Kidwell,et al.  CHAPTER 9 – Hybrid Dysgenesis Determinants , 1983 .

[58]  F. Heffron,et al.  Identification of a transposon Tn3 sequence required for transposition immunity. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Analysis of IS21-mediated mobilization of plasmid pACYC184 by R68.45 in Escherichia coli. , 1983, Plasmid.

[60]  J. Modolell,et al.  Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7.3-kilobase mobile element. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[61]  W. Engels The P family of transposable elements in Drosophila. , 1983, Annual review of genetics.

[62]  J. M. Smith The genetics of stasis and punctuation. , 1983, Annual review of genetics.

[63]  A. Razzaque,et al.  Mutagenesis of a shuttle vector plasmid in mammalian cells , 1984, Molecular and cellular biology.

[64]  R. C. Johnson,et al.  Copy number control of Tn5 transposition. , 1984, Genetics.

[65]  M. Syvanen Conserved regions in mammalian beta-globins: could they arise by cross-species gene exchange? , 1984, Journal of theoretical biology.

[66]  P. Philippsen,et al.  Preferential integration of yeast transposable element Ty into a promoter region , 1984, Nature.