Towards superconductivity in p-type delta-doped Si/Al/Si heterostructures

In pursuit of superconductivity in p-type silicon (Si), we are using a single atomic layer of aluminum (Al) sandwiched between a Si substrate and a thin Si epi-layer. The delta layer was fabricated starting from an ultra high vacuum (UHV) flash anneal of Si(100) surface, followed by physical vapor deposition of Al monolayer. To activate the Al dopants, the sample was then annealed in-situ at 550 °C for 1 min. The Si capping layer was electron-beam evaporated in-situ at room temperature, followed by an ex-situ anneal at 550 °C for 10 min to recrystallize the Si capping layer. Low temperature magnetotransport measurements yield a maximum hole mobility of 20 cm2/V/s at a carrier density 1.39 × 1014 holes/cm2, which corresponds to ≈ (0.93 ± 0.1) holes per dopant atom. No superconductivity was observed in these devices even at T < 300 mK. Atom probe tomography and energy-dispersive X-ray spectroscopy analyses suggest that the Al dopants become distributed over ≈ (17 to 25) nm thickness. Redistribution of Al dopants reduces Al atomic concentration in Si matrix below the critical density to observe superconductivity.

[1]  R. Silver,et al.  STM patterned nanowire measurements using photolithographically defined implants in Si(100) , 2018, Scientific Reports.

[2]  C. Richter,et al.  High resolution thickness measurements of ultrathin Si:P monolayers using weak localization , 2018 .

[3]  D. Simons,et al.  Temperature dependent 29Si incorporation during deposition of highly enriched 28Si films. , 2017, Physical review materials.

[4]  D. Culcer,et al.  Spin blockade in hole quantum dots: Tuning exchange electrically and probing Zeeman interactions , 2017 .

[5]  S. Sasaki,et al.  Large linear magnetoresistance in the Dirac semimetal TlBiSSe , 2014, 1408.2183.

[6]  M. Simmons,et al.  Low resistivity, super-saturation phosphorus-in-silicon monolayer doping , 2014 .

[7]  Q. Xue,et al.  Quantum and Classical Magnetoresistance in Ambipolar Topological Insulator Transistors with Gate-tunable Bulk and Surface Conduction , 2014, Scientific Reports.

[8]  C. Tahan,et al.  Bottom-up superconducting and Josephson junction devices inside a group-IV semiconductor , 2013, Nature Communications.

[9]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[10]  S. Bednarek,et al.  Spin-orbit-mediated manipulation of heavy-hole spin qubits in gated semiconductor nanodevices. , 2012, Physical review letters.

[11]  H. Ryu,et al.  Ohm’s Law Survives to the Atomic Scale , 2012, Science.

[12]  E. Yablonovitch,et al.  Pronounced Effect of pn-Junction Dimensionality on Tunnel Switch Threshold Shape , 2011, 1109.0096.

[13]  A D Wieck,et al.  Resistively detected nuclear magnetic resonance in n- and p-type GaAs quantum point contacts. , 2011, Nano letters.

[14]  M. Helm,et al.  On-chip superconductivity via gallium overdoping of silicon , 2010 .

[15]  M. Simmons,et al.  Investigating the surface quality and confinement of Si:P δ-layers at different growth temperatures , 2010 .

[16]  B. Gautier,et al.  Low-temperature transition to a superconducting phase in boron-doped silicon films grown on (001)-oriented silicon wafers , 2009, 0910.5378.

[17]  Pierre M. Petroff,et al.  Optical pumping of a single hole spin in a quantum dot , 2008, Nature.

[18]  X. Blase,et al.  Superconductivity in doped cubic silicon: An ab initio study , 2007, cond-mat/0701194.

[19]  X. Blase,et al.  Superconductivity in doped cubic silicon , 2006, Nature.

[20]  D. Loss,et al.  Spin relaxation and decoherence of holes in quantum dots. , 2005, Physical review letters.

[21]  A. Abrikosov,et al.  Quantum linear magnetoresistance; solution of an old mystery , 2003 .

[22]  Heiner Ryssel,et al.  Determination of aluminum diffusion parameters in silicon , 2002 .

[23]  D. J. Eaglesham,et al.  Semiconductor molecular‐beam epitaxy at low temperatures , 1995 .

[24]  H. S. Luftman,et al.  Doping of Si thin films by low‐temperature molecular beam epitaxy , 1993 .

[25]  H. Gossmann,et al.  Dopant electrical activity and majority-carrier mobility in B- and Sb-δ-doped Si thin films , 1993 .

[26]  M. Cerullo,et al.  Low‐temperature Si molecular beam epitaxy: Solution to the doping problem , 1990 .

[27]  E. Keim,et al.  Adsorption of atomic oxygen (N2O) on a clean Si(100) surface and its influence on the surface state density; A comparison with O2 , 1987 .

[28]  G. Bergmann,et al.  Weak localization in thin films: a time-of-flight experiment with conduction electrons , 1984 .

[29]  P. S. Ho,et al.  Grain boundary diffusion of aluminum in polycrystalline silicon films , 1980 .

[30]  P. Kapitza The Study of the Specific Resistance of Bismuth Crystals and Its Change in Strong Magnetic Fields and Some Allied Problems , 1928 .

[31]  A. Sommerfeld,et al.  The Statistical theory of thermoelectric, galvano- and thermomagnetic phenomena in metals , 1931 .