Parallel Implicit Runge-Kutta Methods Applied to Coupled Orbit/Attitude Propagation

A variable-step Gauss-Legendre implicit Runge-Kutta (GLIRK) propagator is applied to coupled orbit/attitude propagation. Concepts previously shown to improve efficiency in 3DOF propagation are modified and extended to the 6DOF problem, including the use of variable-fidelity dynamics models. The impact of computing the stage dynamics of a single step in parallel is examined using up to 23 threads and 22 associated GLIRK stages; one thread is reserved for an extra dynamics function evaluation used in the estimation of the local truncation error. Efficiency is found to peak for typical examples when using approximately 8 to 12 stages for both serial and parallel implementations. Accuracy and efficiency compare favorably to explicit Runge-Kutta and linear-multistep solvers for representative scenarios. However, linear-multistep methods are found to be more efficient for some applications, particularly in a serial computing environment, or when parallelism can be applied across multiple trajectories.

[1]  Brandon A. Jones,et al.  A Survey of Symplectic and Collocation Integration Methods for Orbit Propagation , 2012 .

[2]  P. Houwen,et al.  Parallel iteration of high-order Runge-Kutta methods with stepsize control , 1990 .

[3]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[4]  Aubrey B. Poore,et al.  Implicit Runge-Kutta Methods for Orbit Propagation , 2012 .

[5]  Paul J. Cefola,et al.  Refining Space Object Radiation Pressure Modeling with Bidirectional Reflectance Distribution Functions , 2014 .

[6]  J. Jackson Note on the Numerical Integration of $\frac{{d}^{2}x}{{dt}^{2}}=f(x,t)$ , 1924 .

[7]  O. Montenbruck Numerical integration methods for orbital motion , 1992 .

[8]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[9]  E. Hairer,et al.  Stiff differential equations solved by Radau methods , 1999 .

[10]  M. Jah,et al.  Attitude and Orbit Propagation of High Area-to-Mass Ratio (HAMR) Objects Using a Semi-Coupled Approach , 2013 .

[11]  James Agi Woodburn,et al.  Efficient Numerical Integration of Coupled Orbit and Attitude Trajectories Using an Encke Type Correction Algorithm , 2001 .

[12]  C. Ocampo,et al.  AN ARCHITECTURE FOR A GENERALIZED SPACECRAFT TRAJECTORY DESIGN AND OPTIMIZATION SYSTEM , 2003 .

[13]  Nitin Arora,et al.  A fast, accurate, and smooth planetary ephemeris retrieval system , 2010 .

[14]  Matthew M. Berry,et al.  Implementation of Gauss-Jackson Integration for Orbit Propagation , 2004 .

[15]  Aubrey B. Poore,et al.  Implicit-Runge–Kutta-based methods for fast, precise, and scalable uncertainty propagation , 2015 .

[16]  D. D. Mueller,et al.  Fundamentals of Astrodynamics , 1971 .

[17]  James R. Wertz,et al.  Spacecraft attitude determination and control , 1978 .

[18]  E. Doornbos Thermospheric Density and Wind Determination from Satellite Dynamics , 2012 .

[19]  Laurent O. Jay,et al.  Structure Preservation for Constrained Dynamics with Super Partitioned Additive Runge-Kutta Methods , 1998, SIAM J. Sci. Comput..

[20]  Alan C. Hindmarsh,et al.  Description and use of LSODE, the Livermore Solver for Ordinary Differential Equations , 1993 .

[21]  T. Fukushima SIMPLE, REGULAR, AND EFFICIENT NUMERICAL INTEGRATION OF ROTATIONAL MOTION , 2008 .

[22]  John L. Junkins,et al.  Modified Chebyshev-Picard Iteration Methods for Orbit Propagation , 2011 .

[23]  B. Numerov,et al.  Note on the numerical integration of d2x/dt2 = f(x, t) , 1927 .

[24]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[25]  Nitin Arora,et al.  Parallel Computation of Trajectories Using Graphics Processing Units and Interpolated Gravity Models , 2015 .

[26]  Fred T. Krogh,et al.  On Testing a Subroutine for the Numerical Integration of Ordinary Differential Equations , 1973, JACM.

[27]  Penina Axelrad,et al.  Bandlimited implicit Runge–Kutta integration for Astrodynamics , 2014 .

[28]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[29]  Aubrey B. Poore,et al.  Orbit and uncertainty propagation: a comparison of Gauss–Legendre-, Dormand–Prince-, and Chebyshev–Picard-based approaches , 2014 .

[30]  Ramses van Zon,et al.  Numerical implementation of the exact dynamics of free rigid bodies , 2006, J. Comput. Phys..

[31]  Tomonori Kouya,et al.  Practical Implementation of High-Order Multiple Precision Fully Implicit Runge-Kutta Methods with Step Size Control Using Embedded Formula , 2013, 1306.2392.

[32]  B. Macomber,et al.  Enhancements to Chebyshev-Picard Iteration Efficiency for Generally Perturbed Orbits and Constrained Dynamical Systems , 2015 .

[33]  Brandon A. Jones,et al.  Orbit Propagation Using Gauss-Legendre Collocation , 2012 .