Parallel Implicit Runge-Kutta Methods Applied to Coupled Orbit/Attitude Propagation
暂无分享,去创建一个
[1] Brandon A. Jones,et al. A Survey of Symplectic and Collocation Integration Methods for Orbit Propagation , 2012 .
[2] P. Houwen,et al. Parallel iteration of high-order Runge-Kutta methods with stepsize control , 1990 .
[3] Rudolph van der Merwe,et al. Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .
[4] Aubrey B. Poore,et al. Implicit Runge-Kutta Methods for Orbit Propagation , 2012 .
[5] Paul J. Cefola,et al. Refining Space Object Radiation Pressure Modeling with Bidirectional Reflectance Distribution Functions , 2014 .
[6] J. Jackson. Note on the Numerical Integration of $\frac{{d}^{2}x}{{dt}^{2}}=f(x,t)$ , 1924 .
[7] O. Montenbruck. Numerical integration methods for orbital motion , 1992 .
[8] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[9] E. Hairer,et al. Stiff differential equations solved by Radau methods , 1999 .
[10] M. Jah,et al. Attitude and Orbit Propagation of High Area-to-Mass Ratio (HAMR) Objects Using a Semi-Coupled Approach , 2013 .
[11] James Agi Woodburn,et al. Efficient Numerical Integration of Coupled Orbit and Attitude Trajectories Using an Encke Type Correction Algorithm , 2001 .
[12] C. Ocampo,et al. AN ARCHITECTURE FOR A GENERALIZED SPACECRAFT TRAJECTORY DESIGN AND OPTIMIZATION SYSTEM , 2003 .
[13] Nitin Arora,et al. A fast, accurate, and smooth planetary ephemeris retrieval system , 2010 .
[14] Matthew M. Berry,et al. Implementation of Gauss-Jackson Integration for Orbit Propagation , 2004 .
[15] Aubrey B. Poore,et al. Implicit-Runge–Kutta-based methods for fast, precise, and scalable uncertainty propagation , 2015 .
[16] D. D. Mueller,et al. Fundamentals of Astrodynamics , 1971 .
[17] James R. Wertz,et al. Spacecraft attitude determination and control , 1978 .
[18] E. Doornbos. Thermospheric Density and Wind Determination from Satellite Dynamics , 2012 .
[19] Laurent O. Jay,et al. Structure Preservation for Constrained Dynamics with Super Partitioned Additive Runge-Kutta Methods , 1998, SIAM J. Sci. Comput..
[20] Alan C. Hindmarsh,et al. Description and use of LSODE, the Livermore Solver for Ordinary Differential Equations , 1993 .
[21] T. Fukushima. SIMPLE, REGULAR, AND EFFICIENT NUMERICAL INTEGRATION OF ROTATIONAL MOTION , 2008 .
[22] John L. Junkins,et al. Modified Chebyshev-Picard Iteration Methods for Orbit Propagation , 2011 .
[23] B. Numerov,et al. Note on the numerical integration of d2x/dt2 = f(x, t) , 1927 .
[24] J. Dormand,et al. High order embedded Runge-Kutta formulae , 1981 .
[25] Nitin Arora,et al. Parallel Computation of Trajectories Using Graphics Processing Units and Interpolated Gravity Models , 2015 .
[26] Fred T. Krogh,et al. On Testing a Subroutine for the Numerical Integration of Ordinary Differential Equations , 1973, JACM.
[27] Penina Axelrad,et al. Bandlimited implicit Runge–Kutta integration for Astrodynamics , 2014 .
[28] Lawrence F. Shampine,et al. The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..
[29] Aubrey B. Poore,et al. Orbit and uncertainty propagation: a comparison of Gauss–Legendre-, Dormand–Prince-, and Chebyshev–Picard-based approaches , 2014 .
[30] Ramses van Zon,et al. Numerical implementation of the exact dynamics of free rigid bodies , 2006, J. Comput. Phys..
[31] Tomonori Kouya,et al. Practical Implementation of High-Order Multiple Precision Fully Implicit Runge-Kutta Methods with Step Size Control Using Embedded Formula , 2013, 1306.2392.
[32] B. Macomber,et al. Enhancements to Chebyshev-Picard Iteration Efficiency for Generally Perturbed Orbits and Constrained Dynamical Systems , 2015 .
[33] Brandon A. Jones,et al. Orbit Propagation Using Gauss-Legendre Collocation , 2012 .