Continuity of Singular Kähler–Einstein Potentials

[1]  C. Schnell,et al.  Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities , 2018, Journal of the American Mathematical Society.

[2]  T. Peternell,et al.  Algebraic integrability of foliations with numerically trivial canonical bundle , 2017, Inventiones mathematicae.

[3]  P. Eyssidieux,et al.  Corrigendum: Viscosity Solutions to Complex Monge‐Ampère Equations , 2017 .

[4]  Stefan Kebekus,et al.  Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups , 2017, Geometry & Topology.

[5]  Patrick Graf,et al.  Finite quotients of three-dimensional complex tori , 2017, 1701.04749.

[6]  H. Hein,et al.  Calabi-Yau manifolds with isolated conical singularities , 2016, 1607.02940.

[7]  S. Druel A decomposition theorem for singular spaces with trivial canonical class of dimension at most five , 2016, Inventiones mathematicae.

[8]  Henri Guenancia KÄHLER–EINSTEIN METRICS WITH CONE SINGULARITIES ON KLT PAIRS , 2012, 1212.1383.

[9]  P. Eyssidieux,et al.  Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties , 2011, Journal für die reine und angewandte Mathematik (Crelles Journal).

[10]  S. Dinew,et al.  On stability and continuity of bounded solutions of degenerate complex Monge–Ampère equations over compact Kähler manifolds , 2010 .

[11]  P. Eyssidieux,et al.  Viscosity solutions to degenerate complex monge‐ampère equations , 2010, 1007.0076.

[12]  Bo Guan,et al.  Complex Monge-Ampere equations and totally real submanifolds , 2009, 0910.1851.

[13]  D. Phong,et al.  The Dirichlet problem for degenerate complex Monge-Ampere equations , 2009, 0904.1898.

[14]  Frank Wikström The Dirichlet problem for maximal plurisubharmonic functions on analytic varieties in C^n , 2009 .

[15]  S. Dinew,et al.  Hölder continuous solutions to Monge–Ampère equations , 2008, 1112.1388.

[16]  Philippe Eyssidieux,et al.  Singular Kähler-Einstein metrics , 2006, math/0603431.

[17]  U. Cegrell,et al.  Subextension of plurisubharmonic functions with bounded Monge-Ampère mass , 2003 .

[18]  S. Kołodziej The complex Monge-Ampère equation , 1998 .

[19]  J. Spruck,et al.  The dirichlet problem for nonlinear second‐order elliptic equations. II. Complex monge‐ampère, and uniformaly elliptic, equations , 1985 .

[20]  U. Cegrell On the dirichlet problem for the complex Monge-Ampère operator , 1984 .

[21]  B. A. Taylor,et al.  A new capacity for plurisubharmonic functions , 1982 .

[22]  R. Narasimhan,et al.  The Levi problem on complex spaces with singularities , 1980 .

[23]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[24]  B. A. Taylor,et al.  The dirichlet problem for a complex Monge-Ampère equation , 1976 .

[25]  A. Zeriahi Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions , 2001 .

[26]  P. Cherrier,et al.  Le problème de Dirichlet pour les équationsde Monge–Ampère en métrique hermitienne , 1999 .

[27]  P. Lelong Fonctions plurisousharmoniques et fonctions analytiques de variables réelles , 1961 .