Continuity of Singular Kähler–Einstein Potentials
暂无分享,去创建一个
[1] C. Schnell,et al. Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities , 2018, Journal of the American Mathematical Society.
[2] T. Peternell,et al. Algebraic integrability of foliations with numerically trivial canonical bundle , 2017, Inventiones mathematicae.
[3] P. Eyssidieux,et al. Corrigendum: Viscosity Solutions to Complex Monge‐Ampère Equations , 2017 .
[4] Stefan Kebekus,et al. Klt varieties with trivial canonical class: holonomy, differential forms, and fundamental groups , 2017, Geometry & Topology.
[5] Patrick Graf,et al. Finite quotients of three-dimensional complex tori , 2017, 1701.04749.
[6] H. Hein,et al. Calabi-Yau manifolds with isolated conical singularities , 2016, 1607.02940.
[7] S. Druel. A decomposition theorem for singular spaces with trivial canonical class of dimension at most five , 2016, Inventiones mathematicae.
[8] Henri Guenancia. KÄHLER–EINSTEIN METRICS WITH CONE SINGULARITIES ON KLT PAIRS , 2012, 1212.1383.
[9] P. Eyssidieux,et al. Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties , 2011, Journal für die reine und angewandte Mathematik (Crelles Journal).
[10] S. Dinew,et al. On stability and continuity of bounded solutions of degenerate complex Monge–Ampère equations over compact Kähler manifolds , 2010 .
[11] P. Eyssidieux,et al. Viscosity solutions to degenerate complex monge‐ampère equations , 2010, 1007.0076.
[12] Bo Guan,et al. Complex Monge-Ampere equations and totally real submanifolds , 2009, 0910.1851.
[13] D. Phong,et al. The Dirichlet problem for degenerate complex Monge-Ampere equations , 2009, 0904.1898.
[14] Frank Wikström. The Dirichlet problem for maximal plurisubharmonic functions on analytic varieties in C^n , 2009 .
[15] S. Dinew,et al. Hölder continuous solutions to Monge–Ampère equations , 2008, 1112.1388.
[16] Philippe Eyssidieux,et al. Singular Kähler-Einstein metrics , 2006, math/0603431.
[17] U. Cegrell,et al. Subextension of plurisubharmonic functions with bounded Monge-Ampère mass , 2003 .
[18] S. Kołodziej. The complex Monge-Ampère equation , 1998 .
[19] J. Spruck,et al. The dirichlet problem for nonlinear second‐order elliptic equations. II. Complex monge‐ampère, and uniformaly elliptic, equations , 1985 .
[20] U. Cegrell. On the dirichlet problem for the complex Monge-Ampère operator , 1984 .
[21] B. A. Taylor,et al. A new capacity for plurisubharmonic functions , 1982 .
[22] R. Narasimhan,et al. The Levi problem on complex spaces with singularities , 1980 .
[23] S. Yau. On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .
[24] B. A. Taylor,et al. The dirichlet problem for a complex Monge-Ampère equation , 1976 .
[25] A. Zeriahi. Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions , 2001 .
[26] P. Cherrier,et al. Le problème de Dirichlet pour les équationsde Monge–Ampère en métrique hermitienne , 1999 .
[27] P. Lelong. Fonctions plurisousharmoniques et fonctions analytiques de variables réelles , 1961 .