Impact of degenerate n-doping on the optical absorption edge in transparent conducting cadmium oxide
暂无分享,去创建一个
S. K. Vasheghani Farahani | C. F. McConville | T. D. Veal | A. Schleife | A. Schleife | C. McConville | T. Veal | S. V. Farahani | S. K. Vasheghani Farahani | Tim D. Veal | Christopher McConville | Andr'e Schleife
[1] T. Moss. The Interpretation of the Properties of Indium Antimonide , 1954 .
[2] E. Haller,et al. Ideal transparent conductors for full spectrum photovoltaics , 2012 .
[3] F. P. Koffyberg. Thermoreflectance spectra of CdO: Band gaps and band-population effects , 1976 .
[4] F. Bechstedt,et al. Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy , 2008 .
[5] J. Zúñiga-Pérez,et al. Electron mobility in CdO films , 2011 .
[6] Georg Kresse,et al. Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124, 154709 (2006)] , 2006 .
[7] F. Bechstedt,et al. Structural, electrical, and optical properties of hydrogen-doped ZnO films , 2012 .
[8] R. Egdell,et al. N-type doping in CdO ceramics: a study by EELS and photoemission spectroscopy , 1998 .
[9] P. H. Jefferson,et al. Bandgap and effective mass of epitaxial cadmium oxide , 2008 .
[10] K. Baedeker. Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen , 1907 .
[11] André Anders,et al. Determining the nonparabolicity factor of the CdO conduction band using indium doping and the Drude theory , 2012 .
[12] Karl-Fredrik Berggren,et al. Band-gap narrowing in heavily doped many-valley semiconductors , 1981 .
[13] K. Zakrzewska,et al. Scattering of charge carriers in transparent and conducting thin oxide films with a non-parabolic conduction band , 1989 .
[14] F. Bechstedt,et al. Electronic structure of single-crystal rocksalt CdO studied by soft x-ray spectroscopies and ab initio calculations , 2008 .
[15] F. Bechstedt,et al. Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons? , 2011, Physical review letters.
[16] P. H. Jefferson,et al. Valence-band electronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopy and quasi-particle-corrected density-functional theory calculations , 2009 .
[17] R. W. Wright,et al. The Characteristic Temperature and Effective Electron Mass for Conduction Processes in Cadmium Oxide , 1958 .
[18] D. Scanlon,et al. Sources of conductivity and doping limits in CdO from hybrid density functional theory. , 2011, Journal of the American Chemical Society.
[19] J. Zúñiga-Pérez,et al. Temperature dependence of the direct bandgap and transport properties of CdO , 2013 .
[20] E. Burstein. Anomalous Optical Absorption Limit in InSb , 1954 .
[21] W. P. Mulligan,et al. Search for improved transparent conducting oxides: A fundamental investigation of CdO, Cd2SnO4, and Zn2SnO4 , 2000 .
[22] B. Krauskopf,et al. Proc of SPIE , 2003 .
[23] P. H. Jefferson,et al. Response to "Comment on 'Bandgap and effective mass determination of epitaxial cadmium oxide'" [Appl. Phys. Lett. 92, 106103 (2008)] , 2008 .
[24] Ab-initio studies of electronic and spectroscopic properties of MgO, ZnO and CdO , 2008 .
[25] E. Fortunato,et al. Transparent Conducting Oxides for Photovoltaics , 2007 .
[26] Hartwin Peelaers,et al. Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2 , 2012 .
[27] Friedhelm Bechstedt,et al. Ab initio description of quasiparticle band structures and optical near-edge absorption of transparent conducting oxides , 2012 .
[28] Wladek Walukiewicz,et al. Effects of the narrow band gap on the properties of InN , 2002 .
[29] S. Glutsch. Excitons in Low-Dimensional Semiconductors: Theory Numerical Methods Applications , 2004 .
[30] Arthur P. Ramirez,et al. Oxide Electronics Emerge , 2007, Science.
[31] Frank Fuchs,et al. Optical and energy-loss spectra of MgO, ZnO, and CdO from ab initio many-body calculations , 2009 .
[32] Friedhelm Bechstedt,et al. Real-structure effects: Absorption edge of MgxZn1-xO, CdxZn1-xO, and n-type ZnO from ab-initio calculations , 2012, OPTO.
[33] J. Khurgin,et al. Reflecting upon the losses in plasmonics and metamaterials , 2012 .
[34] F. Bechstedt,et al. Tin dioxide from first principles: Quasiparticle electronic states and optical properties , 2011 .
[35] First-principles study of ground- and excited-state properties of MgO , ZnO , and CdO polymorphs , 2006, cond-mat/0604480.
[36] J. Paier,et al. Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.
[37] J. Zúñiga-Pérez,et al. Structural analysis of CdO layers grown on r-plane sapphire (011¯2) by metalorganic vapor-phase epitaxy , 2004 .
[38] G. Scuseria,et al. Hybrid functionals based on a screened Coulomb potential , 2003 .
[39] N. Zakhleniuk,et al. Carrier-induced refractive index change and optical absorption in wurtzite InN and GaN: Full-band approach , 2009, 0911.2312.
[40] E. Kioupakis,et al. Auger recombination and free-carrier absorption in nitrides from first principles , 2010 .
[41] Gustavo E. Scuseria,et al. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .
[42] Johansson,et al. Electronic and optical properties of red HgI2. , 1996, Physical review. B, Condensed matter.