Impact of degenerate n-doping on the optical absorption edge in transparent conducting cadmium oxide

In order to facilitate the development of next-generation display devices or modern solar cells, material performance is critically important. A combination of high transparency in the optical spectral range and high electrical conductivity under ambient conditions is attractive, if not crucial, for many applications. While the doping-induced presence of free electrons in the conduction bands of CdO can increase the conductivity up to values desired for technological applications, it is, however, expected to impact the optical properties at the same time. More specifically, variations of the band gap, effective electron mass, and optical-absorption onset have been reported. In this work recent results from modern theoretical spectroscopy techniques are compared to experimental values for the optical band gap in order to discuss the different effects that are relevant for an accurate understanding of the absorption edge in the presence of free electrons with different concentrations.

[1]  T. Moss The Interpretation of the Properties of Indium Antimonide , 1954 .

[2]  E. Haller,et al.  Ideal transparent conductors for full spectrum photovoltaics , 2012 .

[3]  F. P. Koffyberg Thermoreflectance spectra of CdO: Band gaps and band-population effects , 1976 .

[4]  F. Bechstedt,et al.  Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy , 2008 .

[5]  J. Zúñiga-Pérez,et al.  Electron mobility in CdO films , 2011 .

[6]  Georg Kresse,et al.  Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124, 154709 (2006)] , 2006 .

[7]  F. Bechstedt,et al.  Structural, electrical, and optical properties of hydrogen-doped ZnO films , 2012 .

[8]  R. Egdell,et al.  N-type doping in CdO ceramics: a study by EELS and photoemission spectroscopy , 1998 .

[9]  P. H. Jefferson,et al.  Bandgap and effective mass of epitaxial cadmium oxide , 2008 .

[10]  K. Baedeker Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen , 1907 .

[11]  André Anders,et al.  Determining the nonparabolicity factor of the CdO conduction band using indium doping and the Drude theory , 2012 .

[12]  Karl-Fredrik Berggren,et al.  Band-gap narrowing in heavily doped many-valley semiconductors , 1981 .

[13]  K. Zakrzewska,et al.  Scattering of charge carriers in transparent and conducting thin oxide films with a non-parabolic conduction band , 1989 .

[14]  F. Bechstedt,et al.  Electronic structure of single-crystal rocksalt CdO studied by soft x-ray spectroscopies and ab initio calculations , 2008 .

[15]  F. Bechstedt,et al.  Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons? , 2011, Physical review letters.

[16]  P. H. Jefferson,et al.  Valence-band electronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopy and quasi-particle-corrected density-functional theory calculations , 2009 .

[17]  R. W. Wright,et al.  The Characteristic Temperature and Effective Electron Mass for Conduction Processes in Cadmium Oxide , 1958 .

[18]  D. Scanlon,et al.  Sources of conductivity and doping limits in CdO from hybrid density functional theory. , 2011, Journal of the American Chemical Society.

[19]  J. Zúñiga-Pérez,et al.  Temperature dependence of the direct bandgap and transport properties of CdO , 2013 .

[20]  E. Burstein Anomalous Optical Absorption Limit in InSb , 1954 .

[21]  W. P. Mulligan,et al.  Search for improved transparent conducting oxides: A fundamental investigation of CdO, Cd2SnO4, and Zn2SnO4 , 2000 .

[22]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[23]  P. H. Jefferson,et al.  Response to "Comment on 'Bandgap and effective mass determination of epitaxial cadmium oxide'" [Appl. Phys. Lett. 92, 106103 (2008)] , 2008 .

[24]  Ab-initio studies of electronic and spectroscopic properties of MgO, ZnO and CdO , 2008 .

[25]  E. Fortunato,et al.  Transparent Conducting Oxides for Photovoltaics , 2007 .

[26]  Hartwin Peelaers,et al.  Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2 , 2012 .

[27]  Friedhelm Bechstedt,et al.  Ab initio description of quasiparticle band structures and optical near-edge absorption of transparent conducting oxides , 2012 .

[28]  Wladek Walukiewicz,et al.  Effects of the narrow band gap on the properties of InN , 2002 .

[29]  S. Glutsch Excitons in Low-Dimensional Semiconductors: Theory Numerical Methods Applications , 2004 .

[30]  Arthur P. Ramirez,et al.  Oxide Electronics Emerge , 2007, Science.

[31]  Frank Fuchs,et al.  Optical and energy-loss spectra of MgO, ZnO, and CdO from ab initio many-body calculations , 2009 .

[32]  Friedhelm Bechstedt,et al.  Real-structure effects: Absorption edge of MgxZn1-xO, CdxZn1-xO, and n-type ZnO from ab-initio calculations , 2012, OPTO.

[33]  J. Khurgin,et al.  Reflecting upon the losses in plasmonics and metamaterials , 2012 .

[34]  F. Bechstedt,et al.  Tin dioxide from first principles: Quasiparticle electronic states and optical properties , 2011 .

[35]  First-principles study of ground- and excited-state properties of MgO , ZnO , and CdO polymorphs , 2006, cond-mat/0604480.

[36]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[37]  J. Zúñiga-Pérez,et al.  Structural analysis of CdO layers grown on r-plane sapphire (011¯2) by metalorganic vapor-phase epitaxy , 2004 .

[38]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[39]  N. Zakhleniuk,et al.  Carrier-induced refractive index change and optical absorption in wurtzite InN and GaN: Full-band approach , 2009, 0911.2312.

[40]  E. Kioupakis,et al.  Auger recombination and free-carrier absorption in nitrides from first principles , 2010 .

[41]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[42]  Johansson,et al.  Electronic and optical properties of red HgI2. , 1996, Physical review. B, Condensed matter.