Independence and coloring properties of direct products of some vertex-transitive graphs

Let @a(G) and @g(G) denote the independence number and chromatic number of a graph G, respectively. Let GxH be the direct product graph of graphs G and H. We show that if G and H are circular graphs, Kneser graphs, or powers of cycles, then @a(GxH)=max{@a(G)|V(H)|,@a(H)|V(G)|} and @g(GxH)=min{@g(G),@g(H)}.

[1]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[2]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[3]  Pavol Hell,et al.  A note on the star chromatic number , 1990, J. Graph Theory.

[4]  Claude Tardif,et al.  Projectivity and independent sets in powers of graphs , 2002, J. Graph Theory.

[5]  Douglas R. Woodall,et al.  Choosability of Powers of Circuits , 2003, Graphs Comb..

[6]  S. Stahl n-Tuple colorings and associated graphs , 1976 .

[7]  A. Vince,et al.  Star chromatic number , 1988, J. Graph Theory.

[8]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[9]  Michael O. Albertson,et al.  Homomorphisms of 3-chromatic graphs , 1985, Discret. Math..

[10]  Claude Tardif,et al.  Graph products and the chromatic difference sequence of vertex-transitive graphs , 1998, Discret. Math..

[11]  Norbert Sauer,et al.  The chromatic number of the product of two 4-chromatic graphs is 4 , 1985, Comb..

[12]  Pranava K. Jha,et al.  Independence in Direct-Product Graphs , 1998, Ars Comb..

[13]  E. Weisstein Kneser's Conjecture , 2002 .

[14]  A. J. W. Hilton,et al.  SOME INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1967 .

[15]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[16]  G. Hahn,et al.  Graph homomorphisms: structure and symmetry , 1997 .

[17]  S. Hedetniemi Homomorphisms of graphs and automata , 1967 .

[18]  Rudolf Ahlswede,et al.  The Intersection Theorem for Direct Products , 1998, European journal of combinatorics (Print).