Stochastic solution of population balance equations for reactor networks

This work presents a sequential modular approach to solve a generic network of reactors with a population balance model using a stochastic numerical method. Full-coupling to the gas-phase is achieved through operator-splitting. The convergence of the stochastic particle algorithm in test networks is evaluated as a function of network size, recycle fraction and numerical parameters. These test cases are used to identify methods through which systematic and statistical error may be reduced, including by use of stochastic weighted algorithms. The optimal algorithm was subsequently used to solve a one-dimensional example of silicon nanoparticle synthesis using a multivariate particle model. This example demonstrated the power of stochastic methods in resolving particle structure by investigating the transient and spatial evolution of primary polydispersity, degree of sintering and TEM-style images. An algorithm is presented to solve reactor networks with a population balance model.A stochastic method is used to solve the population balance equations.The convergence and efficiency of the reported algorithms are evaluated.The algorithm is applied to simulate silicon nanoparticle synthesis in a 1D reactor.Particle structure is reported as a function of reactor length and time.

[1]  Steven N. Rogak,et al.  Study of soot growth in a plug flow reactor using a moving sectional model , 2005 .

[2]  Markus Kraft,et al.  A new numerical approach for the simulation of the growth of inorganic nanoparticles , 2006 .

[3]  Kikuo Okuyama,et al.  Evaluation of Sintering of Nanometer-Sized Titania Using Aerosol Method , 1995 .

[4]  Markus Kraft,et al.  Numerical investigation of DQMoM-IEM as a turbulent reaction closure , 2010 .

[5]  Karl K. Sabelfeld,et al.  Stochastic algorithms for solving Smolouchovsky coagulation equation and applications to aerosol growth simulation. , 1996, Monte Carlo Methods Appl..

[6]  Carl Wassgren,et al.  A general compartment‐based population balance model for particle coating and layered granulation , 2012 .

[7]  Robert I. A. Patterson,et al.  Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity , 2015, J. Comput. Phys..

[8]  Markus Kraft,et al.  An efficient stochastic algorithm for simulating Nano-particle dynamics , 2002 .

[9]  Roberto Irizarry,et al.  Fast Compartmental Monte Carlo Simulation of Population Balance Models: Application to Nanoparticle Formation in Nonhomogeneous Conditions , 2012 .

[10]  Hung V. Nguyen,et al.  A method for the synthesis of submicron particles , 1987 .

[11]  Michael Frenklach,et al.  Aerosol dynamics modeling using the method of moments , 1987 .

[12]  Sandro Macchietto,et al.  A general methodology for hybrid multizonal/CFD models: Part I. Theoretical framework , 2004, Comput. Chem. Eng..

[13]  Markus Kraft,et al.  The Suitability of Particle Models in Capturing Aggregate Structure and Polydispersity , 2013 .

[14]  M. Kraft,et al.  A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames , 2003 .

[15]  Robert I. A. Patterson,et al.  A predictor-corrector algorithm for the coupling of stiff ODEs to a particle population balance , 2009, J. Comput. Phys..

[16]  Amit Bhave,et al.  Partially Stirred Reactor Model: Analytical Solutions and Numerical Convergence Study of a PDF/Monte Carlo Method , 2004, SIAM J. Sci. Comput..

[17]  Sotiris E. Pratsinis,et al.  Computational fluid-particle dynamics for the flame synthesis of alumina particles , 2000 .

[18]  Peter J.T. Verheijen,et al.  Optimal Design of Solution Crystallization Processes with Rigorous Models , 2003 .

[19]  Sebastian Mosbach,et al.  Towards a Detailed Soot Model for Internal Combustion Engines , 2009 .

[20]  Sebastian Mosbach,et al.  Synthesis of silicon nanoparticles with a narrow size distribution: A theoretical study , 2012 .

[21]  Daniele Marchisio,et al.  Solution of population balance equations using the direct quadrature method of moments , 2005 .

[22]  Robert I. A. Patterson,et al.  A Stochastic Weighted Particle Method for Coagulation-Advection Problems , 2012, SIAM J. Sci. Comput..

[23]  F. Einar Kruis,et al.  Computational fluid dynamics based stochastic aerosol modeling: Combination of a cell-based weighted random walk method and a constant-number Monte-Carlo method for aerosol dynamics , 2012 .

[24]  Wolfgang Wagner,et al.  On a multivariate population balance model to describe the structure and composition of silica nanoparticles , 2012, Comput. Chem. Eng..

[25]  R. I. A. PATTERSON,et al.  The Linear Process Deferment Algorithm: A new technique for solving population balance equations , 2006, SIAM J. Sci. Comput..

[26]  Markus Kraft,et al.  Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting , 2007 .

[27]  M. Frenklach,et al.  Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames , 1998 .

[28]  Chuguang Zheng,et al.  A differentially weighted Monte Carlo method for two-component coagulation , 2010, J. Comput. Phys..

[29]  Sandro Macchietto,et al.  A general methodology for hybrid multizonal/CFD models: Part II. Automatic zoning , 2004, Comput. Chem. Eng..

[30]  Michail A. Gallis,et al.  Accuracy and efficiency of the sophisticated direct simulation Monte Carlo algorithm for simulating noncontinuum gas flows , 2009 .

[31]  Markus Kraft,et al.  Developing the PAH-PP soot particle model using process informatics and uncertainty propagation , 2011 .

[32]  Markus Kraft,et al.  Modelling and validation of granulation with heterogeneous binder dispersion and chemical reaction , 2007 .

[33]  Michael P. M. Jank,et al.  Aerosol synthesis of silicon nanoparticles with narrow size distribution—Part 1: Experimental investigations , 2010 .

[34]  Wolfgang Wagner,et al.  A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation , 2013, Comput. Math. Appl..

[35]  Markus Kraft,et al.  A new model for silicon nanoparticle synthesis , 2013 .

[36]  Jasdeep Singh,et al.  Stochastic modeling of soot particle size and age distributions in laminar premixed flames , 2005 .

[37]  M. Kraft,et al.  A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles , 2012 .

[38]  Venkataramana Runkana,et al.  Simulation of nanoparticle synthesis in an aerosol flame reactor using a coupled flame dynamics–monodisperse population balance model , 2012 .

[39]  Markus Kraft,et al.  A coupled CFD-population balance approach for nanoparticle synthesis in turbulent reacting flows , 2011 .

[40]  Alan Jones,et al.  On the influence of mixing on crystal precipitation processes—application of the segregated feed model , 2002 .

[41]  Costas Kiparissides,et al.  Nonhomogeneous Mixing Population Balance Model for the Prediction of Particle Size Distribution in Large Scale Emulsion Polymerization Reactors , 2013 .

[42]  Marina Bosch,et al.  Elements Of Chemical Reaction Engineering , 2016 .

[43]  Jorma Jokiniemi,et al.  COMPUTATIONAL FLUID DYNAMICS BASED SECTIONAL AEROSOL MODELLING SCHEMES , 2000 .

[44]  Markus Kraft,et al.  A Detailed Model for the Sintering of Polydispersed Nanoparticle Agglomerates , 2009 .

[45]  Chuguang Zheng,et al.  A population balance-Monte Carlo method for particle coagulation in spatially inhomogeneous systems , 2013 .

[46]  Robert I. A. Patterson,et al.  Application of stochastic weighted algorithms to a multidimensional silica particle model , 2013, J. Comput. Phys..

[47]  Sebastian Mosbach,et al.  A fully coupled simulation of PAH and soot growth with a population balance model , 2013 .

[48]  Jasdeep Singh,et al.  Extending stochastic soot simulation to higher pressures , 2006 .

[49]  Alejandro L. Garcia,et al.  A Monte Carlo simulation of coagulation , 1987 .

[50]  Wolfgang Wagner,et al.  An Efficient Stochastic Algorithm for Studying Coagulation Dynamics and Gelation Phenomena , 2000, SIAM J. Sci. Comput..