Generalized F-tests for the multivariate normal mean

Based on Lauter's [Lauter, J., 1996. Exact t and F tests for analyzing studies with multiple endpoints. Biometrics 52, 964-970] exact t test for biometrical studies related to the multivariate normal mean, we develop a generalized F-test for the multivariate normal mean and extend it to multiple comparison. The proposed generalized F-tests have simple approximate null distributions. A Monte Carlo study and two real examples show that the generalized F-test is at least as good as the optional individual Lauter's test and can improve its performance in some situations where the projection directions for the Lauter's test may not be suitably chosen. The generalized F-test could be superior to individual Lauter's tests and the classical Hotelling T^2-test for the general purpose of testing the multivariate normal mean. It is shown by Monte Carlo studies that the extended generalized F-test outperforms the commonly-used classical test for multiple comparison of normal means in the case of high dimension with small sample sizes.