Dynamical analysis and impulsive control of a new hyperchaotic system

A new hyperchaotic system has been proposed recently. It is generated by controlling a unified chaotic system to hyperchaotic via a simple technique using a sinusoidal parameter perturbation control input. In this paper, we further investigate its dynamical behaviors, its circuit implementation and its impulsive control. Different chaotic attractors are illustrated by both numerical simulations and electronic experiments. It is also shown that the new hyperchaotic system can be stabilized by impulsive control.

[1]  An-Pei Wang,et al.  Controlling hyperchaos of the Rossler system , 1999 .

[2]  O. Rössler An equation for hyperchaos , 1979 .

[3]  Guanrong Chen,et al.  Controlling a unified chaotic system to hyperchaotic , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  Saverio Mascolo,et al.  A Systematic Procedure for Synchronizing Hyperchaos Via Observer Design , 2002, J. Circuits Syst. Comput..

[5]  C. P. Silva,et al.  Shil'nikov's theorem-a tutorial , 1993 .

[6]  T. Tsubone,et al.  Hyperchaos from a 4-D manifold piecewise-linear system , 1998 .

[7]  W. T. Rhodes,et al.  Communicating with hyperchaos: The dynamics of a DNLF emitter and recovery of transmitted information , 2003 .

[8]  Kok Lay Teo,et al.  Impulsive Control of Chaotic System , 2002, Int. J. Bifurc. Chaos.

[9]  Giuseppe Grassi,et al.  New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.

[10]  Silvano Cincotti,et al.  Hyperchaotic behaviour of two bi‐directionally coupled Chua's circuits , 2002, Int. J. Circuit Theory Appl..

[11]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[12]  K. A. Shore,et al.  Adaptive Time-delay Hyperchaos Synchronization in Laser Diodes Subject to Optical Feedback , 2002 .

[13]  K. Thamilmaran,et al.  Hyperchaos in a Modified Canonical Chua's Circuit , 2004, Int. J. Bifurc. Chaos.

[14]  A. Tamasevicius,et al.  Hyperchaos in coupled Colpitts oscillators , 2003 .

[15]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.