Dynamical analysis and impulsive control of a new hyperchaotic system
暂无分享,去创建一个
[1] An-Pei Wang,et al. Controlling hyperchaos of the Rossler system , 1999 .
[2] O. Rössler. An equation for hyperchaos , 1979 .
[3] Guanrong Chen,et al. Controlling a unified chaotic system to hyperchaotic , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.
[4] Saverio Mascolo,et al. A Systematic Procedure for Synchronizing Hyperchaos Via Observer Design , 2002, J. Circuits Syst. Comput..
[5] C. P. Silva,et al. Shil'nikov's theorem-a tutorial , 1993 .
[6] T. Tsubone,et al. Hyperchaos from a 4-D manifold piecewise-linear system , 1998 .
[7] W. T. Rhodes,et al. Communicating with hyperchaos: The dynamics of a DNLF emitter and recovery of transmitted information , 2003 .
[8] Kok Lay Teo,et al. Impulsive Control of Chaotic System , 2002, Int. J. Bifurc. Chaos.
[9] Giuseppe Grassi,et al. New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.
[10] Silvano Cincotti,et al. Hyperchaotic behaviour of two bi‐directionally coupled Chua's circuits , 2002, Int. J. Circuit Theory Appl..
[11] Daizhan Cheng,et al. Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.
[12] K. A. Shore,et al. Adaptive Time-delay Hyperchaos Synchronization in Laser Diodes Subject to Optical Feedback , 2002 .
[13] K. Thamilmaran,et al. Hyperchaos in a Modified Canonical Chua's Circuit , 2004, Int. J. Bifurc. Chaos.
[14] A. Tamasevicius,et al. Hyperchaos in coupled Colpitts oscillators , 2003 .
[15] Guanrong Chen,et al. On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.