Estimation of Discrete Distributions with a Class of Simplex Constraints

Abstract Simplex constraints, such as monotonicity and convexity or concavity on the probabilities of a set of discrete distributions, are useful for modeling and analyzing discrete data. This article considers both maximum likelihood estimation and Bayesian estimation of discrete distribution with a class of simplex constraints using the Expectation-Maximization (EM) algorithm and the data augmentation (DA) algorithm. The formulation and implementation of EM and DA for binomial, Poisson, hierarchical Poisson-binomial, multinomial, and hierarchical multinomial distributions are considered in detail and illustrated with examples.

[1]  D. Rubin,et al.  Parameter expansion to accelerate EM: The PX-EM algorithm , 1998 .

[2]  M. Ridout,et al.  Estimating the Concentration of Propagules of a Plant Pathogen from Soil Dilution Plate Counts when the Response is Non‐linear , 1997 .

[3]  Xiao-Li Meng,et al.  The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .

[4]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[5]  Xiao-Li Meng,et al.  Multiple-Imputation Inferences with Uncongenial Sources of Input , 1994 .

[6]  Y. Vardi,et al.  From image deblurring to optimal investments : maximum likelihood solutions for positive linear inverse problems , 1993 .

[7]  Charles L. Byrne,et al.  Iterative image reconstruction algorithms based on cross-entropy minimization , 1992, Optics & Photonics.

[8]  Bradley P. Carlin,et al.  A SIMPLE MONTE CARLO APPROACH TO BAYESIAN GRADUATION , 1992 .

[9]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[10]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[11]  James D. Broffiti INCREASING AND INCREASING CONVEX BAYESIAN GRADUATION , 1988 .

[12]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[13]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[14]  C. N. Morris,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[15]  K. Lange,et al.  A Theoretical Study of Some Maximum Likelihood Algorithms for Emission and Transmission Tomography , 1987, IEEE Transactions on Medical Imaging.

[16]  R. Little,et al.  Maximum likelihood estimation for mixed continuous and categorical data with missing values , 1985 .

[17]  L. Shepp,et al.  A Statistical Model for Positron Emission Tomography , 1985 .

[18]  K. Lange,et al.  EM reconstruction algorithms for emission and transmission tomography. , 1984, Journal of computer assisted tomography.

[19]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[20]  Dorothy T. Thayer,et al.  EM algorithms for ML factor analysis , 1982 .

[21]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[22]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[23]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .