Conservatism of the circle criterion-solution of a problem posed by A. Megretski
暂无分享,去创建一个
[1] Charles R. Johnson,et al. Convex sets of nonsingular and P:–Matrices , 1995 .
[2] A. Megretski. How conservative is the circle criterion , 1999 .
[3] Arjan van der Schaft,et al. Open Problems in Mathematical Systems and Control Theory , 1999 .
[4] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[5] J. Rohn. Systems of linear interval equations , 1989 .
[6] M. Fiedler. Special matrices and their applications in numerical mathematics , 1986 .
[7] S. Rump. THEOREMS OF PERRON-FROBENIUS TYPE FOR MATRICES WITHOUT SIGN RESTRICTIONS , 1997 .
[8] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[9] James Demmel,et al. The Componentwise Distance to the Nearest Singular Matrix , 1992, SIAM J. Matrix Anal. Appl..
[10] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[11] Andrew Packard,et al. The complex structured singular value , 1993, Autom..
[12] Siegfried M. Rump. Ill-Conditioned Matrices Are Componentwise Near to Singularity , 1999, SIAM Rev..