Glutamine Synthetase in Legumes: Recent Advances in Enzyme Structure and Functional Genomics

Glutamine synthetase (GS) is the key enzyme involved in the assimilation of ammonia derived either from nitrate reduction, N2 fixation, photorespiration or asparagine breakdown. A small gene family is encoding for different cytosolic (GS1) or plastidic (GS2) isoforms in legumes. We summarize here the recent advances carried out concerning the quaternary structure of GS, as well as the functional relationship existing between GS2 and processes such as nodulation, photorespiration and water stress, in this latter case by means of proline production. Functional genomic analysis using GS2-minus mutant reveals the key role of GS2 in the metabolic control of the plants and, more particularly, in carbon metabolism.

[1]  J. Stougaard,et al.  Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus. , 2012, The Plant journal : for cell and molecular biology.

[2]  M. Chiurazzi,et al.  Photorespiratory metabolism and nodule function: behavior of Lotus japonicus mutants deficient in plastid glutamine synthetase. , 2012, Molecular plant-microbe interactions : MPMI.

[3]  I. Ribeiro,et al.  Glutamine Synthetase Is a Molecular Target of Nitric Oxide in Root Nodules of Medicago truncatula and Is Regulated by Tyrosine Nitration1[W][OA] , 2011, Plant Physiology.

[4]  M. Saqi,et al.  New perspectives on glutamine synthetase in grasses. , 2011, Journal of experimental botany.

[5]  M. Udvardi,et al.  Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress. , 2010, The New phytologist.

[6]  Xueping Zhou,et al.  A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses , 2010, Planta.

[7]  G. Coupland,et al.  Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes , 2010, Proceedings of the National Academy of Sciences.

[8]  C. Vieira,et al.  Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds , 2010, BMC Plant Biology.

[9]  A. Fernie,et al.  Photorespiration: players, partners and origin. , 2010, Trends in plant science.

[10]  M. Betti,et al.  Identification of an essential cysteinyl residue for the structure of glutamine synthetase α from Phaseolus vulgaris , 2010, Planta.

[11]  A. Savouré,et al.  Proline: a multifunctional amino acid. , 2010, Trends in plant science.

[12]  H. Carvalho,et al.  Crystallization and preliminary crystallographic characterization of glutamine synthetase from Medicago truncatula. , 2009, Acta crystallographica. Section F, Structural biology and crystallization communications.

[13]  Staffan Persson,et al.  Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. , 2009, Plant, cell & environment.

[14]  M. Chiurazzi,et al.  A variety of regulatory mechanisms are involved in the nitrogen-dependent modulation of the nodule organogenesis program in legume roots , 2009, Plant signaling & behavior.

[15]  J. Schulze,et al.  Elevated CO2 concentration around alfalfa nodules increases N2 fixation , 2009, Journal of experimental botany.

[16]  Michael K. Udvardi,et al.  Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants , 2009, PloS one.

[17]  Cong-Zhao Zhou,et al.  Crystal structure of Saccharomyces cerevisiae glutamine synthetase Gln1 suggests a nanotube‐like supramolecular assembly , 2009, Proteins.

[18]  M. Delledonne,et al.  Symbiotic competence in Lotus japonicus is affected by plant nitrogen status: transcriptomic identification of genes affected by a new signalling pathway. , 2009, The New phytologist.

[19]  S. Bernard,et al.  The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. , 2009, The New phytologist.

[20]  C. Foyer,et al.  Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. , 2009, Annual review of plant biology.

[21]  S. Munné-Bosch,et al.  How relevant are flavonoids as antioxidants in plants? , 2009, Trends in plant science.

[22]  S. Assmann,et al.  Hormone interactions in stomatal function , 2009, Plant Molecular Biology.

[23]  J. Araus,et al.  Comparative genomic and physiological analysis of nutrient response to NH4+, NH4+:NO3- and NO3- in barley seedlings. , 2008, Physiologia plantarum.

[24]  R. Terauchi,et al.  Regulation of expression of rice thaumatin-like protein: inducibility by elicitor requires promoter W-box elements , 2008, Plant Cell Reports.

[25]  N. Tejera,et al.  Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. , 2008, Journal of plant physiology.

[26]  S. Mowbray,et al.  Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design. , 2008, Journal of molecular biology.

[27]  T. Yamaya,et al.  Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). , 2007, Journal of experimental botany.

[28]  Francisco R. Cantón,et al.  Ammonium assimilation and amino acid metabolism in conifers. , 2007, Journal of experimental botany.

[29]  B. Forde,et al.  Glutamate in plants: metabolism, regulation, and signalling. , 2007, Journal of experimental botany.

[30]  B. Ney,et al.  The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. , 2007, Journal of experimental botany.

[31]  Georg F. Weiller,et al.  GeneBins: a database for classifying gene expression data, with application to plant genome arrays , 2007, BMC Bioinformatics.

[32]  Alfonso Valencia,et al.  The three-dimensional structure of an eukaryotic glutamine synthetase: functional implications of its oligomeric structure. , 2006, Journal of structural biology.

[33]  L. Sodek,et al.  Growth and stress conditions cause similar changes in xylem amino acids for different legume species , 2006 .

[34]  M. Kusunoki,et al.  Atomic Structure of Plant Glutamine Synthetase , 2006, Journal of Biological Chemistry.

[35]  J. Cullimore,et al.  Post-translational regulation of cytosolic glutamine synthetase of Medicago truncatula. , 2006, Journal of experimental botany.

[36]  T. Arcondéguy,et al.  Molecular analysis of two mutants from Lotus japonicus deficient in plastidic glutamine synthetase: functional properties of purified GLN2 enzymes , 2006, Planta.

[37]  G. Stacey,et al.  Genetics and functional genomics of legume nodulation. , 2006, Current opinion in plant biology.

[38]  J. Ortega,et al.  The 3' untranslated region of a soybean cytosolic glutamine synthetase (GS1) affects transcript stability and protein accumulation in transgenic alfalfa. , 2006, The Plant journal : for cell and molecular biology.

[39]  J. Cullimore,et al.  Phosphorylation and subsequent interaction with 14-3-3 proteins regulate plastid glutamine synthetase in Medicago truncatula , 2006, Planta.

[40]  A. Keys The re-assimilation of ammonia produced by photorespiration and the nitrogen economy of C3 higher plants , 2006, Photosynthesis Research.

[41]  J. Monza,et al.  Nitrate assimilation in Lotus japonicus. , 2005, Journal of experimental botany.

[42]  S. Tabata,et al.  Lotus japonicus: legume research in the fast lane. , 2005, Trends in plant science.

[43]  R. Sunkar,et al.  Drought and Salt Tolerance in Plants , 2005 .

[44]  J. Teixeira,et al.  Glutamine synthetase of potato (Solanum tuberosum L. cv. Desiree) plants: cell- and organ-specific expression and differential developmental regulation reveal specific roles in nitrogen assimilation and mobilization. , 2005, Journal of experimental botany.

[45]  A. Good,et al.  Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? , 2004, Trends in plant science.

[46]  R. A. Ludwig,et al.  Arabidopsis thaliana GLN2-Encoded Glutamine Synthetase Is Dual Targeted to Leaf Mitochondria and Chloroplasts , 2004, The Plant Cell Online.

[47]  J. Ortega,et al.  Biochemical and molecular characterization of transgenic Lotus japonicus plants constitutively over-expressing a cytosolic glutamine synthetase gene , 2004, Planta.

[48]  H. Fromm,et al.  GABA in plants: just a metabolite? , 2004, Trends in plant science.

[49]  O. Séné,et al.  Does Lowering Glutamine Synthetase Activity in Nodules Modify Nitrogen Metabolism and Growth of Lotus japonicus?1 , 2003, Plant Physiology.

[50]  Isabel M. Santos,et al.  Expression of the Plastid-Located Glutamine Synthetase ofMedicago truncatula. Accumulation of the Precursor in Root Nodules Reveals an in Vivo Control at the Level of Protein Import into Plastids1 , 2003, Plant Physiology.

[51]  C. Vance,et al.  Legumes: Importance and Constraints to Greater Use , 2003, Plant Physiology.

[52]  S. Shishkova,et al.  Antisense inhibition of NADH glutamate synthase impairs carbon/nitrogen assimilation in nodules of alfalfa (Medicago sativa L.). , 2003, The Plant journal : for cell and molecular biology.

[53]  Martin Parniske,et al.  A TILLING Reverse Genetics Tool and a Web-Accessible Collection of Mutants of the Legume Lotus japonicus 1 , 2003, Plant Physiology.

[54]  M. Betti,et al.  ATP binding to purified homopolymeric plant glutamine synthetase studied by isothermal titration calorimetry , 2002 .

[55]  H. Langen,et al.  Glutamine Synthetase Isolated from Human Brain: Octameric Structure and Homology of Partial Primary Structure with Human Liver Glutamine Synthetase , 2002, Biochemistry (Moscow).

[56]  David Eisenberg,et al.  Multicopy crystallographic refinement of a relaxed glutamine synthetase from Mycobacterium tuberculosis highlights flexible loops in the enzymatic mechanism and its regulation. , 2002, Biochemistry.

[57]  E. Pajuelo,et al.  Isolation of photorespiratory mutants from Lotus japonicus deficient in glutamine synthetase. , 2002, Physiologia plantarum.

[58]  C. Foyer,et al.  Photorespiration-dependent increases in phosphoenolpyruvate carboxylase, isocitrate dehydrogenase and glutamate dehydrogenase in transformed tobacco plants deficient in ferredoxin-dependent glutamine–α-ketoglutarate aminotransferase , 2002, Planta.

[59]  E. González,et al.  Continuous CO2 enrichment leads to increased nodule biomass, carbon availability to nodules and activity of carbon‐metabolising enzymes but does not enhance specific nitrogen fixation in pea , 2001 .

[60]  R. Tischner,et al.  The chloroplastic glutamine synthetase (GS-2) of tobacco is phosphorylated and associated with 14-3-3 proteins inside the chloroplast , 2001, Planta.

[61]  J. Ortega,et al.  Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. , 2001, Plant physiology.

[62]  D Eisenberg,et al.  The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition. , 2001, Biochemistry.

[63]  R. Leegood,et al.  Photorespiration: metabolic pathways and their role in stress protection. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[64]  J. Schjoerring,et al.  Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 protein interaction. , 2000, The Plant journal : for cell and molecular biology.

[65]  Márquez,et al.  Site-directed mutagenesis of Cys-92 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase reveals that this highly conserved residue is not essential for enzyme activity but it is involved in thermal stability. , 2000, Plant science : an international journal of experimental plant biology.

[66]  H. Hoshida,et al.  Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase , 2000, Plant Molecular Biology.

[67]  A. Migge,et al.  Leaf-specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings , 2000, Planta.

[68]  P. Gresshoff,et al.  Does root glutamine synthetase control plant biomass production in Lotus japonicus L.? , 1999, Planta.

[69]  Y. Roux,et al.  Glutamine Synthetase in the Phloem Plays a Major Role in Controlling Proline Production , 1999, Plant Cell.

[70]  M. Clemente,et al.  Functional importance of Asp56 from the α‐polypeptide of Phaseolus vulgaris glutamine synthetase , 1999 .

[71]  Minchin,et al.  Sucrose synthase in legume nodules is essential for nitrogen fixation , 1999, Plant physiology.

[72]  Clemente Mt,et al.  Site-directed mutagenesis of Glu-297 from the α-polypeptide of Phaseolus vulgaris glutamine synthetase alters kinetic and structural properties and confers resistance to L-methionine sulfoximine , 1999 .

[73]  C. Sunkel,et al.  Heteromeric assembly of the cytosolic glutamine synthetase polypeptides of Medicago truncatula: complementation of a glnA Escherichia coli mutant with a plant domain-swapped enzyme , 1997, Plant Molecular Biology.

[74]  A. Kozaki,et al.  Photorespiration protects C3 plants from photooxidation , 1996, Nature.

[75]  B. Forde,et al.  Glutamine synthetase polypeptides in the roots of 55 legume species in relation to their climatic origin and the partitioning of nitrate assimilation , 1996 .

[76]  G. Coruzzi,et al.  THE MOLECULAR-GENETICS OF NITROGEN ASSIMILATION INTO AMINO ACIDS IN HIGHER PLANTS. , 1996, Annual review of plant physiology and plant molecular biology.

[77]  F. Sánchez,et al.  Regulation of Nodule Glutamine Synthetase by CO(2) Levels in Bean (Phaseolus vulgaris L.). , 1992, Plant physiology.

[78]  D. Eisenberg,et al.  Refined atomic model of glutamine synthetase at 3.5 A resolution. , 1989, The Journal of biological chemistry.

[79]  P. Lea,et al.  Inhibition of Photosynthesis in Barley with Decreased Levels of Chloroplastic Glutamine Synthetase Activity , 1987 .

[80]  I. Herskowitz Functional inactivation of genes by dominant negative mutations , 1987, Nature.

[81]  E. Orlova,et al.  Electron microscopy of multiple forms of glutamine synthetase from bacteroids and the cytosol of yellow lupin root nodules , 1987 .

[82]  P. Lea,et al.  Carbon and nitrogen metabolism in barley (Hordeum vulgare L.) mutants lacking ferredoxin-dependent glutamate synthase , 1986, Planta.

[83]  M. Andrews Nitrate and reduced-N concentrations in the xylem sap of Stellaria media, Xanthium strumarium and six legume species , 1986 .

[84]  K. Joy,et al.  Role of asparagine in the photorespiratory nitrogen metabolism of pea leaves. , 1985, Plant physiology.

[85]  N. Kiselev,et al.  Glutamine synthetases of pea leaf and seed cytosol. Structure and properties , 1985 .

[86]  W. A. Brun,et al.  Effect of Atmospheric CO(2) Enrichment on Growth, Nonstructural Carbohydrate Content, and Root Nodule Activity in Soybean. , 1982, Plant physiology.

[87]  Evstigneeva Zg,et al.  Glutamine synthetase from the pumpkin leaf cytosol , 1981 .

[88]  C. Somerville,et al.  Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity , 1980, Nature.

[89]  C. Somerville,et al.  A phosphoglycolate phosphatase-deficient mutant of Arabidopsis , 1979, Nature.

[90]  B. Miflin,et al.  Photorespiratory nitrogen cycle , 1978, Nature.

[91]  J. G. Robertson,et al.  Ammonia assimilation in lupin nodules , 1976, Nature.

[92]  D. Phillips,et al.  THE EFFECT OF CO2 ENRICHMENT ON ROOT NODULE DEVELOPMENT AND SYMBIOTIC N2 REDUCTION IN PISUM SATIVUM L. , 1976 .

[93]  R. McParland,et al.  The purification and properties of the glutamine synthetase from the cytosol of Soya-bean root nodules. , 1976, The Biochemical journal.

[94]  R. McGregor Structure and Properties , 1954 .

[95]  A. Weber,et al.  The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism. , 2011, The Plant journal : for cell and molecular biology.

[96]  A. Suzuki,et al.  REVIEW: PART OF A SPECIAL ISSUE ON PLANT NUTRITION Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture , 2010 .

[97]  J. Schulze,et al.  Elevated CO 2 concentration around alfalfa nodules increases N 2 fixation , 2009 .

[98]  Bogumil J. Karas,et al.  Genetics of symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci. , 2006, Molecular plant-microbe interactions : MPMI.

[99]  A. J. Márquez Lotus japonicus handbook , 2005 .

[100]  M. Vanoni,et al.  Structure–function studies on the complex iron–sulfur flavoprotein glutamate synthase: the key enzyme of ammonia assimilation , 2004, Photosynthesis Research.

[101]  M. Clemente,et al.  Site-directed mutagenesis of Glu-297 from the α-polypeptide of Phaseolus vulgaris glutamine synthetase alters kinetic and structural properties and confers resistance to L-methionine sulfoximine , 2004, Plant Molecular Biology.

[102]  E. Pajuelo,et al.  Nitrogen assimilation in roots of the model legume Lotus japonicus , 2004 .

[103]  C. Vance,et al.  Update on Legume Utilization Legumes : Importance and Constraints to Greater Use , 2003 .

[104]  S. Chaillou,et al.  Overexpression of a soybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate , 2002, Planta.

[105]  Dev T. Britto,et al.  NH4+ toxicity in higher plants: a critical review , 2002 .

[106]  M. Hamberg,et al.  Involvement of the Arabidopsis alpha-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. , 2002, The Plant journal : for cell and molecular biology.

[107]  Carol MacKintosh,et al.  Cytosolic glutamine synthetase and not nitrate reductase from the green alga Chlamydomonas reinhardtii is phosphorylated and binds 14-3-3 proteins , 2001, Planta.

[108]  P. Lea,et al.  Nitrogen metabolism in higher plants. , 1999 .

[109]  B. Hirel,et al.  Glutamine Synthetase in Higher Plants: Regulation of Gene and Protein Expression from the Organ to the Cell , 1999 .

[110]  G. H. Heichel,et al.  CARBON IN N2 FIXATION: Limitation or Exquisite Adaptation , 1991 .

[111]  A. Kendall,et al.  Barley mutants lacking chloroplast glutamine synthetase-biochemical and genetic analysis. , 1987, Plant physiology.

[112]  David Eisenberg,et al.  Novel subunit—subunit interactions in the structure of glutamine synthetase , 1986, Nature.