Pareto Simulated Annealing

The paper presents a multiple objective metaheuristic procedure -Pareto Simulated Annealing. The goal of the procedure is to find in a relatively short time a “good” approximation of the set of efficient solutions of a multiple objective combinatorial optimization problem. The procedure uses a sample of generating solutions. Each of the solutions explores its neighborhood in a way similar to that of classical simulated annealing. Weights of the objectives are set in each iteration in order to assure a tendency to approach the efficient solutions set while maintaining a uniform distribution of the generating solutions over this set.

[1]  A. Charnes,et al.  Goal programming and multiple objective optimizations: Part 1 , 1977 .

[2]  Roman Słowiński,et al.  Advances in project scheduling , 1989 .

[3]  E. L. Ulungu,et al.  Multi‐objective combinatorial optimization problems: A survey , 1994 .

[4]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[5]  Roger M. Y. Ho,et al.  Goal programming and extensions , 1976 .

[6]  Bernard Roy,et al.  Aide multicritère à la décision : méthodes et cas , 1993 .

[7]  D. J. White,et al.  A Bibliography on the Applications of Mathematical Programming Multiple-objective Methods , 1990 .

[8]  P. Hansen,et al.  Essays and surveys on multiple criteria decision making : proceedings of the Fifth International Conference on Multiple Criteria Decision Making, Mons, Belgium, August 9-13, 1982 , 1983 .

[9]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[10]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[11]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Sang M. Lee,et al.  Goal programming for decision analysis , 1972 .

[14]  R. Słowiński Multiobjective network scheduling with efficient use of renewable and nonrenewable resources , 1981 .

[15]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[17]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[18]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[19]  Roman Slowinski,et al.  Multiobjective project scheduling under multiple-category resource constraint , 1989 .

[20]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[21]  R. Rosenthal Concepts, Theory, and Techniques PRINCIPLES OF MULTIOBJECTIVE OPTIMIZATION* , 1985 .

[22]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[23]  John R. Current,et al.  Multiobjective transportation network design and routing problems: Taxonomy and annotation , 1993 .

[24]  Bruce L. Golden,et al.  VEHICLE ROUTING: METHODS AND STUDIES , 1988 .

[25]  W. Habenicht,et al.  Quad Trees, a Datastructure for Discrete Vector Optimization Problems , 1983 .

[26]  J. Current Multiple objectives in transportation network design and routing , 1993 .

[27]  Richard E. Rosenthal,et al.  Principles of multiobjective optimization , 1984 .

[28]  Ching-Lai Hwang,et al.  Mathematical programming with multiple objectives: A tutorial , 1980, Comput. Oper. Res..