Modification of WC hard alloy by compressive plasma flow

[1]  Jianbin Xu,et al.  Synthesis of WC–TiC35–Co10 nanocomposite powder by a novel method , 2004 .

[2]  S. I. Ananin,et al.  Compressive plasma flows interaction with steel surface: structure and mechanical properties of modified layer , 2003 .

[3]  Y. Hatano,et al.  Solid state reaction between tungsten and amorphous carbon , 2002 .

[4]  S. I. Ananin,et al.  The effect of dense compression plasma flow on silicon surface morphology , 2002 .

[5]  Jianbin Xu,et al.  Microchemical and microstructural changes of Co cemented WC induced by ion implantation , 2002 .

[6]  S. K. Malhotra,et al.  Enhancing the metallurgical properties of WC insert (K-20) cutting tool through microwave treatment , 2002 .

[7]  Yunrong Wei,et al.  Escape of carbon element in surface ablation of cobalt cemented tungsten carbide with pulsed UV laser , 2001 .

[8]  J. Mateos,et al.  Tribological behaviour of plasma-sprayed WC coatings with and without laser remelting , 2000 .

[9]  P. V. Orlov,et al.  Pulsed electron-beam treatment of WC–TiC–Co hard-alloy cutting tools: wear resistance and microstructural evolution , 2000 .

[10]  J. Pezoldt,et al.  Preparation of single phase tungsten carbide by annealing of sputtered tungsten-carbon layers , 2000 .

[11]  G. E. Remnev,et al.  High intensity pulsed ion beam sources and their industrial applications , 1999 .

[12]  K. Ebihara,et al.  Properties of WC films synthesized by pulsed YAG laser deposition , 1998 .

[13]  J. Martín,et al.  A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures , 1998 .