Modelling of suffusion in heterogeneous soils using discrete element method

[1]  Xianqi Luo,et al.  Modeling of Suffusion Considering the Influence of Soil Gradation , 2021, Transport in Porous Media.

[2]  Kuang Cheng,et al.  Un-resolved CFD-DEM method: An insight into its limitations in the modelling of suffusion in gap-graded soils , 2020 .

[3]  A. Bennabi,et al.  Effect of Fine Particles and Soil Heterogeneity on the Initiation of Suffusion , 2020, Geotechnical and Geological Engineering.

[4]  M. Xiao,et al.  Influence of constriction-based retention ratio on suffusion in double-layered alluvial foundation with a cutoff wall , 2020 .

[5]  Z. Yin,et al.  Investigating the effect of flow direction on suffusion and its impacts on gap-graded granular soils , 2020, Acta Geotechnica.

[6]  Yulong Luo,et al.  Effect of open-framework gravel on suffusion in sandy gravel alluvium , 2020 .

[7]  Z. Yin,et al.  Hydromechanical modeling of granular soils considering internal erosion , 2020 .

[8]  C. Thornton,et al.  A coupled CFD-DEM method with moving mesh for simulating undrained triaxial tests on granular soils , 2019, Granular Matter.

[9]  R. Gelet,et al.  Modelling the poroelastoplastic behaviour of soils subjected to internal erosion by suffusion , 2019, International Journal for Numerical and Analytical Methods in Geomechanics.

[10]  A. Pantet,et al.  Relationships between the internal erosion parameters and the mechanical properties of granular materials , 2019 .

[11]  T. Bui,et al.  Modelling of internal erosion based on mixture theory: General framework and a case study of soil suffusion , 2019, International Journal for Numerical and Analytical Methods in Geomechanics.

[12]  A. Bennabi,et al.  Suffusion evaluation of coarse-graded soils from Rhine dikes , 2019, Acta Geotechnica.

[13]  Zheng Hu,et al.  Suffusion-induced deformation and microstructural change of granular soils: a coupled CFD–DEM study , 2019, Acta Geotechnica.

[14]  E. Andò,et al.  Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography , 2019, Acta Geotechnica.

[15]  A. Benamar,et al.  Three-dimensional numerical model of internal erosion , 2019, European Journal of Environmental and Civil Engineering.

[16]  C. O’Sullivan,et al.  Coupled particle-fluid simulations of the initiation of suffusion , 2018, Soils and Foundations.

[17]  Qing Yang,et al.  A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils , 2018, Computers and Geotechnics.

[18]  M. Salari,et al.  Hydraulic fracturing: a main cause of initiating internal erosion in a high earth-rock fill dam , 2018, International Journal of Geotechnical Engineering.

[19]  F. Martínez-Moreno,et al.  Identification of leakage and potential areas for internal erosion combining ERT and IP techniques at the Negratín Dam left abutment (Granada, southern Spain) , 2018, Engineering Geology.

[20]  Shunhua Zhou,et al.  Mathematical Modeling of Slurry Infiltration and Particle Dispersion in Saturated Sand , 2018, Transport in Porous Media.

[21]  N. Benahmed,et al.  A discrete numerical model involving partial fluid-solid coupling to describe suffusion effects in soils , 2018 .

[22]  U. Ghia,et al.  Effect of grid type and refinement method on CFD-DEM solution trend with grid size , 2017 .

[23]  F. Nicot,et al.  Scale separation between grain detachment and grain transport in granular media subjected to an internal flow , 2017 .

[24]  D. Chan,et al.  A new approach to DEM simulation of sand production , 2016 .

[25]  Said Taibi,et al.  Analysis of mechanical behaviour and internal stability of granular materials using discrete element method , 2016 .

[26]  A. Benamar,et al.  Modeling of Particle Migration in Porous Media: Application to Soil Suffusion , 2016, Transport in Porous Media.

[27]  Fabien Anselmet,et al.  Numerical modelling of concentrated leak erosion during Hole Erosion Tests , 2015 .

[28]  Glenn R. McDowell,et al.  Micro mechanics of isotropic normal compression , 2013 .

[29]  Luc Sibille,et al.  Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: application to piping erosion , 2013 .

[30]  Emanuele Catalano,et al.  Pore‐scale modeling of fluid‐particles interaction and emerging poromechanical effects , 2013, 1304.4895.

[31]  Emanuele Catalano,et al.  Pore-Scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings , 2012, Transport in Porous Media.

[32]  John R. Williams,et al.  Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media , 2011 .

[33]  L. Sibille,et al.  Suffusion tests on cohesionless granular matter , 2011 .

[34]  L. Scholtès,et al.  Multiscale approaches to describe mechanical responses induced by particle removal in granular materials , 2010 .

[35]  E. Papamichos Erosion and multiphase flow in porous media , 2010 .

[36]  A. Skempton,et al.  Experiments on piping in sandy gravels , 1994 .

[37]  T. C. Kenney,et al.  Internal stability of granular filters , 1985 .

[38]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[39]  E. Bender Numerical heat transfer and fluid flow. Von S. V. Patankar. Hemisphere Publishing Corporation, Washington – New York – London. McGraw Hill Book Company, New York 1980. 1. Aufl., 197 S., 76 Abb., geb., DM 71,90 , 1981 .

[40]  R. D. Mindlin Elastic Spheres in Contact Under Varying Oblique Forces , 1953 .