Law of log determinant of sample covariance matrix and optimal estimation of differential entropy for high-dimensional Gaussian distributions
暂无分享,去创建一个
[1] V. Vu,et al. Random matrices: Law of the determinant , 2011, 1112.0752.
[2] Harrison H. Zhou,et al. Optimal rates of convergence for estimating Toeplitz covariance matrices , 2013 .
[3] Harrison H. Zhou,et al. OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION , 2012, 1302.3030.
[4] Harrison H. Zhou,et al. MINIMAX ESTIMATION OF LARGE COVARIANCE MATRICES UNDER ℓ1-NORM , 2012 .
[5] T. Tao,et al. A central limit theorem for the determinant of a Wigner matrix , 2011, 1111.6300.
[6] Harrison H. Zhou,et al. Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.
[7] Maya R. Gupta,et al. Parametric Bayesian Estimation of Differential Entropy and Relative Entropy , 2010, Entropy.
[8] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[9] Maya R. Gupta,et al. Bayesian estimation of the entropy of the multivariate Gaussian , 2008, 2008 IEEE International Symposium on Information Theory.
[10] A. Rouault. Asymptotic behavior of random determinants in the Laguerre, Gram and Jacobi ensembles , 2006, math/0607767.
[11] Harshinder Singh,et al. Estimation of the entropy of a multivariate normal distribution , 2005 .
[12] T. Tao,et al. On random ±1 matrices: Singularity and determinant , 2004, STOC '05.
[13] Alfred O. Hero,et al. Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.
[14] Anja Vogler,et al. An Introduction to Multivariate Statistical Analysis , 2004 .
[15] Delannay,et al. Distribution of the determinant of a random real-symmetric matrix from the gaussian orthogonal ensemble , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[16] Jorgen Nielsen. The distribution of volume reductions induced by isotropic random projections , 1999, Advances in Applied Probability.
[17] A. M. Mathai. Random p-content of a p-parallelotope in Euclidean n-space , 1999, Advances in Applied Probability.
[18] V. Girko. A Refinement of the Central Limit Theorem for Random Determinants , 1998 .
[19] L. Györfi,et al. Nonparametric entropy estimation. An overview , 1997 .
[20] L. Brown,et al. Information Inequality Bounds on the Minimax Risk (with an Application to Nonparametric Regression) , 1991 .
[21] Vi︠a︡cheslav Leonidovich Girko,et al. Theory of random determinants , 1990 .
[22] D. V. Gokhale,et al. Entropy expressions and their estimators for multivariate distributions , 1989, IEEE Trans. Inf. Theory.
[23] Dag Jonsson. Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .
[24] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[25] V. Girko. The Central Limit Theorem for Random Determinants , 1980 .
[26] N. R. Goodman. The Distribution of the Determinant of a Complex Wishart Distributed Matrix , 1963 .
[27] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[28] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .