A method to evaluate the Hilbert transform on (0, +∞)
暂无分享,去创建一个
[1] I. Notarangelo. Approximation of the Hilbert Transform on the Real Line Using Freud Weights , 2010 .
[2] Doron S. Lubinsky,et al. Orthogonal polynomials for exponential weights x2rhoe-2Q(x) on [0, d), II , 2006, J. Approx. Theory.
[3] M. C. D. Bonis,et al. SOME SIMPLE QUADRATURE RULES FOR EVALUATING THE HILBERT TRANSFORM ON THE REAL LINE , 2003 .
[4] G. Mastroianni,et al. Lagrange Interpolation at Laguerre Zeros in Some Weighted Uniform Spaces , 2001 .
[5] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[6] G. Mastroianni,et al. Numerical approximation of weakly singular integrals on the half line , 2002 .
[7] V. Hutson. Integral Equations , 1967, Nature.
[8] Aleksandar S. Cvetković,et al. THE MATHEMATICA PACKAGE \OrthogonalPolynomials" ⁄ , 2004 .
[9] József Szabados,et al. POLYNOMIAL APPROXIMATION ON THE REAL SEMIAXIS WITH GENERALIZED LAGUERRE WEIGHTS , 2007 .
[10] James S. Ball. Half-Range Generalized Hermite Polynomials and the Related Gaussian Quadratures , 2002, SIAM J. Numer. Anal..
[11] Gradimir V. Milovanović,et al. Some numerical methods for second-kind Fredholm integral equations on the real semiaxis , 2009 .
[12] Donatella Occorsio,et al. Extended Lagrange interpolation in weighted uniform norm , 2009, Appl. Math. Comput..
[13] Giuseppe Mastroianni,et al. Approximation of the Hilbert Transform on the real semiaxis using Laguerre zeros , 2002 .
[14] R. Sakai,et al. Orthonormal polynomials with generalized Freud-type weights , 2003, J. Approx. Theory.
[15] Aleksandar S. Cvetković,et al. NOTE ON A CONSTRUCTION OF WEIGHTS IN GAUSS-TYPE QUADRATURE RULE , 2005 .
[16] Giovanni Monegato,et al. Truncated Quadrature Rules Over (0, INFINITY) and Nyström-Type Methods , 2003, SIAM J. Numer. Anal..
[17] Maria Carmela De Bonis,et al. Approximation of the Hilbert Transform on the real line using Hermite zeros , 2001, Math. Comput..
[18] Yu. A. Brychkov,et al. Integrals and series , 1992 .
[19] Doron S. Lubinsky,et al. Orthogonal Polynomials for Exponential Weights , 2001 .
[20] A. Erdélyi,et al. Tables of integral transforms , 1955 .
[21] C. Frammartino. A Nyström method for solving a boundary value problem on [−1,1] , 2010 .
[22] I. M. Glazman,et al. Theory of linear operators in Hilbert space , 1961 .
[23] G. Milovanović,et al. NUMERICAL CONSTRUCTION OF THE GENERALIZED HERMITE POLYNOMIALS , 2003 .
[24] G. Mastroianni,et al. Interlacing properties of the zeros of the orthogonal polynomials and approximation of the Hilbert transform , 1995 .