A method to evaluate the Hilbert transform on (0,  +∞)

The author proposes a method to approximate the Hilbert transform on the real positive semiaxis by a suitable Lagrange interpolating polynomial. The method employs truncated Gaussian rules and uses the interlacing properties of the zeros of generalized Laguerre polynomials. The error estimate in a weighted uniform norm is proved and some numerical tests show the efficacy of the proposed procedure.

[1]  I. Notarangelo Approximation of the Hilbert Transform on the Real Line Using Freud Weights , 2010 .

[2]  Doron S. Lubinsky,et al.  Orthogonal polynomials for exponential weights x2rhoe-2Q(x) on [0, d), II , 2006, J. Approx. Theory.

[3]  M. C. D. Bonis,et al.  SOME SIMPLE QUADRATURE RULES FOR EVALUATING THE HILBERT TRANSFORM ON THE REAL LINE , 2003 .

[4]  G. Mastroianni,et al.  Lagrange Interpolation at Laguerre Zeros in Some Weighted Uniform Spaces , 2001 .

[5]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[6]  G. Mastroianni,et al.  Numerical approximation of weakly singular integrals on the half line , 2002 .

[7]  V. Hutson Integral Equations , 1967, Nature.

[8]  Aleksandar S. Cvetković,et al.  THE MATHEMATICA PACKAGE \OrthogonalPolynomials" ⁄ , 2004 .

[9]  József Szabados,et al.  POLYNOMIAL APPROXIMATION ON THE REAL SEMIAXIS WITH GENERALIZED LAGUERRE WEIGHTS , 2007 .

[10]  James S. Ball Half-Range Generalized Hermite Polynomials and the Related Gaussian Quadratures , 2002, SIAM J. Numer. Anal..

[11]  Gradimir V. Milovanović,et al.  Some numerical methods for second-kind Fredholm integral equations on the real semiaxis , 2009 .

[12]  Donatella Occorsio,et al.  Extended Lagrange interpolation in weighted uniform norm , 2009, Appl. Math. Comput..

[13]  Giuseppe Mastroianni,et al.  Approximation of the Hilbert Transform on the real semiaxis using Laguerre zeros , 2002 .

[14]  R. Sakai,et al.  Orthonormal polynomials with generalized Freud-type weights , 2003, J. Approx. Theory.

[15]  Aleksandar S. Cvetković,et al.  NOTE ON A CONSTRUCTION OF WEIGHTS IN GAUSS-TYPE QUADRATURE RULE , 2005 .

[16]  Giovanni Monegato,et al.  Truncated Quadrature Rules Over (0, INFINITY) and Nyström-Type Methods , 2003, SIAM J. Numer. Anal..

[17]  Maria Carmela De Bonis,et al.  Approximation of the Hilbert Transform on the real line using Hermite zeros , 2001, Math. Comput..

[18]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[19]  Doron S. Lubinsky,et al.  Orthogonal Polynomials for Exponential Weights , 2001 .

[20]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[21]  C. Frammartino A Nyström method for solving a boundary value problem on [−1,1] , 2010 .

[22]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[23]  G. Milovanović,et al.  NUMERICAL CONSTRUCTION OF THE GENERALIZED HERMITE POLYNOMIALS , 2003 .

[24]  G. Mastroianni,et al.  Interlacing properties of the zeros of the orthogonal polynomials and approximation of the Hilbert transform , 1995 .