LASERS, OPTICS, AND OPTOELECTRONICS 1683 Effect of interface structure on the optical properties of InAs'GaSb laser active regions

We present calculations of the fundamental band gap and intervalence absorption in InAs/GaSb materials incorporating both the intrinsic atomistic symmetry of interface bonding and typical compositional gradients near the interfaces. Including these effects quantitatively explains experimentally observed systematic trends in the band gaps of InAs/GaSb superlattices. Calculations of intervalence absorption indicate that the internal loss in laser active regions based on these materials can not be predicted quantitatively without including these effects.

[1]  Jonathon T. Olesberg,et al.  Theoretical performance of mid-infrared broken-gap multilayer superlattice lasers , 1997 .

[2]  Gregory C. Dente,et al.  Pseudopotential methods for superlattices: Applications to mid-infrared semiconductor lasers , 1999 .

[3]  Ron Kaspi,et al.  Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs–GaSb type-II superlattices , 2001 .

[4]  Christopher L. Felix,et al.  Continuous-wave operation of λ=3.25 μm broadened-waveguide W quantum-well diode lasers up to T=195 K , 2000 .

[5]  C. Yu,et al.  Interface contributions to spin relaxation in a short-period InAs/GaSb superlattice , 2001 .

[6]  E. Ivchenko,et al.  Heavy-light hole mixing at zinc-blende (001) interfaces under normal incidence. , 1996, Physical review. B, Condensed matter.

[7]  L. West,et al.  Recent advances in Sb-based midwave-infrared lasers , 1997 .

[8]  Alan Kost,et al.  Mid‐wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices , 1995 .

[9]  Jerry R. Meyer,et al.  Type‐II quantum‐well lasers for the mid‐wavelength infrared , 1995 .

[10]  Christoph H. Grein,et al.  Theoretical performance limits of 2.1–4.1 μm InAs/InGaSb, HgCdTe, and InGaAsSb lasers , 1995 .

[11]  C. H. Grein,et al.  Theoretical performance of InAs/ InxGa1−xSb superlattice‐based midwave infrared lasers , 1994 .

[12]  Ron Kaspi,et al.  Absorbance spectroscopy and identification of valence subband transitions in type-II InAs/GaSb superlattices , 2000 .

[13]  Krebs,et al.  Giant Optical Anisotropy of Semiconductor Heterostructures with No Common Atom and the Quantum-Confined Pockels Effect. , 1996, Physical review letters.

[14]  D. Chow,et al.  Demonstration of 3.5 mu m Ga/sub 1-x/In/sub x/Sb/InAs superlattice diode laser , 1995 .

[15]  Harper,et al.  Origin of antimony segregation in GaInSb/InAs strained-layer superlattices , 2000, Physical review letters.

[16]  Jerry R. Meyer,et al.  MULTIBAND COUPLING AND ELECTRONIC STRUCTURE OF (INAS)N/(GASB)N SUPERLATTICES , 1999 .