Field Pea in European Cropping Systems: Adaptability, Biological Nitrogen Fixation and Cultivation Practices

This article provides an overview of the production and use of field pea in European farming systems. Pea is cultivated in Europe for both human consumption and for animal feeding. For food, pea is consumed as dry seeds, green pods or green seeds (fresh, canned or frozen). Field pea is also used for animal feed. Pea production has declined in the region; however, interest in pea cultivation has recently revived. Pea production provides several agronomic advantages in the Mediterranean region supporting more sustainable cropping systems and reduced nitrogen fertiliser use. Furthermore, peas for animal feed partly substitute for the increasingly expensive imported soybean. In addition to describing the current situation of pea cultivation and the future perspectives, this chapter reports on the adaptability of pea in Europe, cropping techniques with emphasis on modern farming practices and varieties that make their cultivation more profitable and more attractive to growers, and the cropping systems that are commonly used for field pea production. The currently applied cropping practices in the region, including rotation, soil tillage practices, fertilisation, sowing and crop density, weed, pest and disease management, irrigation and harvesting, are outlined.

[1]  M. Seidenglanz,et al.  Ovicidal effects of thiacloprid, acetamiprid, lambda-cyhalothrin and alpha-cypermethrin on Bruchus pisorum L. (Coleoptera: Chrysomelidae) eggs , 2018 .

[2]  D. Rubiales,et al.  Disease resistance in pea (Pisum sativum L.) types for autumn sowings in Mediterranean environments. , 2018 .

[3]  M. Antunović,et al.  Pea yield and its quality depending on inoculation, nitrogen and molybdenum fertilization , 2018 .

[4]  D. Rubiales,et al.  Use of wild relatives in pea breeding for disease resistance , 2016 .

[5]  E. Prats,et al.  Quantitative Trait Loci Associated to Drought Adaptation in Pea (Pisum sativum L.) , 2015, Plant Molecular Biology Reporter.

[6]  P. Sandaña,et al.  Grain yield and phosphorus use efficiency of wheat and pea in a high yielding environment , 2014 .

[7]  J. Ramanauskienė,et al.  Control of ascochyta blight (Ascochyta complex) in pea under Lithuanian conditions@@@Askochitozės (Ascochyta complex) kontrolė sėjamųjų žirnių pasėlyje Lietuvos sąlygomis , 2014 .

[8]  S. Kulshreshtha,et al.  Life cycle and economic assessment of Western Canadian pulse systems: The inclusion of pulses in crop rotations , 2014 .

[9]  V. Tufarelli,et al.  Effect of sulphur fertilization on fatty acid composition of faba bean (Vicia faba L.), white lupin (Lupinus albus L.) and pea (Pisum sativum L.) grains , 2014 .

[10]  J. Lipiec,et al.  Pea growth and symbiotic activity response to Nod factors (lipo-chitooligosaccharides) and soil compaction , 2013 .

[11]  B. Delbreil,et al.  Combining gene expression and genetic analyses to identify candidate genes involved in cold responses in pea. , 2013, Journal of plant physiology.

[12]  L. Tran,et al.  Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes , 2013, Critical reviews in biotechnology.

[13]  T. Warkentin,et al.  Assessment of tolerance for reducing yield losses in field pea caused by Aphanomyces root rot , 2013, Canadian Journal of Plant Science.

[14]  B. Gossen,et al.  Yield loss and management of downy mildew on field pea in Alberta, Canada , 2013 .

[15]  A. Piotrowska,et al.  Effects of catch crops cultivated for green manure and mineral nitrogen fertilization on soil enzyme activities and chemical properties , 2012 .

[16]  J. Knight Frequency of field pea in rotations impacts biological nitrogen fixation , 2012, Canadian Journal of Plant Science.

[17]  R. Lemke,et al.  Water use profiles across the rooting zones of various pulse crops , 2012 .

[18]  R. Redden,et al.  Sources of high tolerance to salinity in pea (Pisum sativum L.) , 2012, Euphytica.

[19]  R. Tyler,et al.  Review of the health benefits of peas (Pisum sativum L.). , 2012, The British journal of nutrition.

[20]  P. Sandaña,et al.  Comparative assessment of the critical period for grain yield determination of narrow-leafed lupin and pea , 2012 .

[21]  Adria L. Fernandez,et al.  Yield and Weed Abundance in Early- and Late-Sown Field Pea and Lentil , 2012 .

[22]  D. Rubiales,et al.  Clarification on rust species potentially infecting pea (Pisum sativum L.) crop and host range of Uromyces pisi (Pers.) Wint , 2012 .

[23]  R. Lemke,et al.  Intensification of Field Pea Production: Impact on Soil Microbiology , 2012 .

[24]  K. McPhee,et al.  Registration of Pea Germplasm Lines Partially Resistant to Aphanomyces Root Rot for Breeding Fresh or Freezer Pea and Dry Pea Types , 2012 .

[25]  D. Mather,et al.  Variation in tolerance to radiant frost at reproductive stages in field pea germplasm , 2012, Euphytica.

[26]  D. Rubiales,et al.  Differential response of pea (Pisum sativum) to Orobanche crenata, Orobanche foetida and Phelipanche aegyptiaca , 2012 .

[27]  D. Bilalis,et al.  Maize and legumes root growth and yield as influenced by organic fertilization, under Mediterranean environmental conditions. , 2012 .

[28]  D. Rubiales,et al.  Powdery mildew control in pea. A review , 2012, Agronomy for Sustainable Development.

[29]  D. Rubiales,et al.  Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv. syringae in pea (Pisum sativum L.) , 2011, Euphytica.

[30]  B. Tivoli,et al.  Influence of plant stage and organ age on the receptivity of Pisum sativum to Mycosphaerella pinodes , 2011, European Journal of Plant Pathology.

[31]  D. Rubiales,et al.  Innovations in parasitic weeds management in legume crops. A review , 2011, Agronomy for Sustainable Development.

[32]  C. Dordas,et al.  Dry matter yield, nitrogen content, and competition in pea―cereal intercropping systems , 2011 .

[33]  R. Mckenzie,et al.  Integrated Management of Sitona lineatus with Nitrogen Fertilizer, Rhizobium , and Thiamethoxam Insecticide , 2011 .

[34]  C. Dürr,et al.  Pea and bean germination and seedling responses to temperature and water potential , 2011, Seed Science Research.

[35]  T. Warkentin,et al.  Variation in Field Pea (Pisum sativum) Cultivars for Basal Branching and Weed Competition , 2011, Weed Science.

[36]  M. Kontturi,et al.  Pea–oat intercrops to sustain lodging resistance and yield formation in northern European conditions , 2011 .

[37]  T. Warkentin,et al.  Basal branching in field pea cultivars and yield-density relationships , 2010 .

[38]  M. Kharrat,et al.  Intercropping reduces Mycosphaerella pinodes severity and delays upward progress on the pea plant. , 2010 .

[39]  E. Kostyra,et al.  The impact of pea protein hydrolysates on bacterial physiological activity--an in vitro study. , 2010, International journal of food microbiology.

[40]  D. Rubiales,et al.  Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination , 2010 .

[41]  K. Siddique,et al.  Faba bean breeding for drought-affected environments: a physiological and agronomic perspective , 2010 .

[42]  A. Maqbool,et al.  Radiant frost tolerance in pulse crops—a review , 2010, Euphytica.

[43]  B. Tivoli,et al.  Effect and underlying mechanisms of pea-cereal intercropping on the epidemic development of ascochyta blight , 2010, European Journal of Plant Pathology.

[44]  D. Rubiales,et al.  Revisiting strategies for reducing the seedbank of Orobanche and Phelipanche spp. , 2009 .

[45]  M. Evans,et al.  Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum × Pisum fulvum interspecific crosses. , 2009 .

[46]  S. Steinkellner,et al.  Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi , 2009, Mycorrhiza.

[47]  E. Prats,et al.  Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). , 2009, Pest management science.

[48]  R. Matúšová,et al.  Strigolactones: ecological significance and use as a target for parasitic plant control. , 2009, Pest management science.

[49]  L. Dosdall,et al.  Distribution, biology and integrated management of the pea leaf weevil, Sitona lineatus L. (Coleoptera: Curculionidae), with an analysis of research needs. , 2009 .

[50]  G. Restuccia,et al.  Biological Characteristics and Control of Orobanche Crenata Forsk., a Review , 2009 .

[51]  A. K. Srivastva,et al.  Yield potential of garden pea (Pisum sativum L.) varieties, and soil properties under organic and integrated nutrient management systems , 2009 .

[52]  G. McDonald,et al.  Effects of crop rotation, residue retention and sowing time on the incidence and survival of ascochyta blight and its effect on grain yield of field peas (Pisum sativum L.). , 2009 .

[53]  B. Tivoli,et al.  Ascochyta blight development on a new winter pea genotype highly reactive to photoperiod under field conditions , 2009 .

[54]  R. Ford,et al.  Identification and Analysis of Genetic Diversity Structure Within Pisum Genus Based on Microsatellite Markers , 2009 .

[55]  P. Carr,et al.  Impact of tillage on field pea following spring wheat , 2009 .

[56]  D. Bilalis,et al.  Review: the phenomenon of crop-weed competition; a problem or a key for sustainable weed management? , 2009 .

[57]  A. Kurunç,et al.  Response of pea (Pisum sativum) to salinity and irrigation water regime. , 2009 .

[58]  W. E. Kee,et al.  Field Losses for Mechanically Harvested Green Peas , 2008 .

[59]  A. Alfaro-Fernández,et al.  First Report of Pea enation mosaic virus Infecting Pea and Broad Bean in Spain. , 2008, Plant disease.

[60]  M. Jeuffroy,et al.  Agronomic Performance of Different Pea Cultivars Under Various Sowing Periods and Contrasting Soil Structures , 2008 .

[61]  Thomas Nemecek,et al.  Environmental impacts of introducing grain legumes into European crop rotations , 2008 .

[62]  R. Blackshaw,et al.  Comparison of Leafy and Semileafless Pea for Integrated Weed Management , 2008, Weed Technology.

[63]  T. Price,et al.  The epidemiology and management of bacterial blight (Pseudomonas syringae pv. pisi) of field pea (Pisum sativum) in Australia: a review , 2007 .

[64]  P. Annicchiarico,et al.  A Field Pea Ideotype for Organic Systems of Northern Italy , 2007 .

[65]  P. Marschner,et al.  Chemical changes and phosphorus release during decomposition of pea residues in soil , 2007 .

[66]  D. Rubiales,et al.  Intercropping with cereals reduces infection by Orobanche crenata in legumes , 2007 .

[67]  P. Annicchiarico,et al.  Winter survival of pea, faba bean and white lupin cultivars in contrasting Italian locations and sowing times, and implications for selection , 2007, The Journal of Agricultural Science.

[68]  K. Grigorakis,et al.  Differences in chemical composition of field pea (Pisum sativum) cultivars: Effects of cultivation area and year , 2007 .

[69]  S. Diffey,et al.  Influences of field pea (Pisum sativum) density on grain yield and competitiveness with annual ryegrass (Lolium rigidum) in south-eastern Australia , 2006 .

[70]  T. Price,et al.  The epidemiology and control of ascochyta blight in field peas: a review , 2006 .

[71]  B. Gossen,et al.  Impact of seeding rate and depth on mycosphaerella blight and seed yield of field pea , 2006 .

[72]  D. Nielsen,et al.  Water deficit effects on root distribution of soybean, field pea and chickpea , 2006 .

[73]  M. Jeuffroy,et al.  Effect of Sowing Date and Cultivar on Root System Development in Pea (Pisum sativum L.) , 2006, Plant and Soil.

[74]  E. Elkoca,et al.  Response of pea (Pisum sativum L.) to mepiquat chloride under varying application doses and stages , 2006 .

[75]  Jan Grant,et al.  Peas (Pisum sativum L.). , 2006, Methods in molecular biology.

[76]  H. Scherer,et al.  Influence of sulphur supply on glucose and ATP concentrations of inoculated broad beans (Vicia faba minor L.) , 2006, Biology and Fertility of Soils.

[77]  B. B. Ghaley,et al.  Intercropping of Wheat and Pea as Influenced by Nitrogen Fertilization , 2005, Nutrient Cycling in Agroecosystems.

[78]  F. Muehlbauer,et al.  Consistent Quantitative Trait Loci in Pea for Partial Resistance to Aphanomyces euteiches Isolates from the United States and France. , 2005, Phytopathology.

[79]  S. Tyerman,et al.  The role of molybdenum in agricultural plant production. , 2005, Annals of botany.

[80]  Y. Crozat,et al.  N2 fixation and N supply in organic pea (Pisum sativum L.) cropping systems as affected by weeds and peaweevil (Sitona lineatus L.) , 2005 .

[81]  E. Deibert,et al.  Field Pea Growth and Nutrient Uptake: Response to Tillage Systems and Nitrogen Fertilizer Applications , 2004 .

[82]  M. A. Turk,et al.  Field Pea Seeding Management for Semi-arid Mediterranean Conditions , 2004 .

[83]  G. Hill,et al.  Variability in yield of four grain legume species in a subhumid temperate environment I. Yields and harvest index , 2004, The Journal of Agricultural Science.

[84]  G. Hill,et al.  Variability in yield of four grain legume species in a subhumid temperate environment. II. Yield components , 2004, The Journal of Agricultural Science.

[85]  E. Wicker,et al.  Specific Behaviour of French Aphanomyces Euteiches Drechs. Populations For Virulence and Aggressiveness on Pea, Related to Isolates from Europe, America and New Zealand , 2001, European Journal of Plant Pathology.

[86]  S. McGrath,et al.  Effects of sulphur nutrition on growth and nitrogen fixation of pea (Pisum sativum L.) , 1999, Plant and Soil.

[87]  H. Scherer,et al.  N2 fixation and growth of legumes as affected by sulphur fertilization , 1996, Biology and Fertility of Soils.

[88]  B. Ney,et al.  Plant symbiotic mutants as a tool to analyse nitrogen nutrition and yield relationship in field-growth peas (Pisum sativum L.) , 1993, Plant and Soil.

[89]  N. Munier-Jolain,et al.  Cold acclimation of winter and spring peas: carbon partitioning as affected by light intensity , 2003 .

[90]  D. Rubiales,et al.  Crenate broomrape (Orobanche crenata) infection in field pea cultivars , 2003 .

[91]  J. Wery,et al.  High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. , 2003, Functional plant biology : FPB.

[92]  M. Edelenbos,et al.  Drought Effects on Green Pea Texture and Related Physical-Chemical Properties at Comparable Maturity , 2003 .

[93]  M. Lanza,et al.  Peas (Pisum sativum L.) as an alternative protein source in lamb diets: growth performances, and carcass and meat quality , 2003 .

[94]  P. Miller,et al.  Optimum plant population density for chickpea and dry pea in a semiarid environment , 2003 .

[95]  Anne-Catherine Schneider Overview of the market and consumption of puises in Europe , 2002, British Journal of Nutrition.

[96]  M. Badaruddin,et al.  Frost Tolerance of Ten Seedling Legume Species at Four Growth Stages , 2001 .

[97]  E. Bremer,et al.  Response of pea to rhizobia inoculation and starter nitrogen in Alberta , 2001 .

[98]  M. Hullé,et al.  Pathogenic characteristics of isolates of Aphanomyces euteiches from pea in France , 2001 .

[99]  A. Johnston,et al.  Field pea response to seeding depth and P fertilization , 2001 .

[100]  D. D. Poudel,et al.  Impacts of cropping systems on soil nitrogen storage and loss , 2001 .

[101]  R. Blackshaw,et al.  Timing Weed Removal in Field Pea (Pisum sativum)1 , 2001, Weed Technology.

[102]  D. Rolston,et al.  Biological nitrogen fixation by fababean, pea and chickpea, under field conditions, estimated by the isotope dilution technique , 1999 .

[103]  R. Cousin Peas (Pisum sativum L.) , 1997 .

[104]  R. Stegmark Downy mildew on peas (Peronospora viciae f sp pisi) , 1994 .

[105]  F. Grosjean,et al.  Composition and nutritive value of peas for pigs: A review of European results , 1990 .

[106]  C. Centeno,et al.  Influence of peas (Pisum sativum) as a dietary ingredient and flavomycin supplementation on the performance and intestinal microflora of broiler chicks. , 1989, British poultry science.

[107]  J. Gueguen,et al.  Quantitative and qualitative variability of pea (Pisum sativum L.) protein composition , 1988 .

[108]  P. Hebblethwaite,et al.  The effects of soil compaction on the emergence, growth and yield of sugar beet and peas , 1980 .

[109]  D. Zohary,et al.  Domestication of Pulses in the Old World , 1973, Science.

[110]  O. H. Long,et al.  Phosphorus and Potassium Fertilization , 1964 .