The efficient computation of Fourier transforms on the symmetric group

This paper introduces new techniques for the efficient computation of Fourier transforms on symmetric groups and their homogeneous spaces. We replace the matrix multiplications in Clausen's algorithm with sums indexed by combinatorial objects that generalize Young tableaux, and write the result in a form similar to Horner's rule. The algorithm we obtain computes the Fourier transform of a function on S n in no more than 3/4n(n-1)|S n | multiplications and the same number of additions. Analysis of our algorithm leads to several combinatorial problems that generalize path counting. We prove corresponding results for inverse transforms and transforms on homogeneous spaces.

[1]  P. Diaconis A Generalization of Spectral Analysis with Application to Ranked Data , 1989 .

[2]  Daniel ROCKMOREMarch,et al.  Eecient Computation of Isotypic Projections for the Symmetric Group , 1993 .

[3]  Daniel N. Rockmore,et al.  Separation of Variables and the Computation of Fourier Transforms on Finite Groups, II , 2015, Discrete Mathematics & Theoretical Computer Science.

[4]  P. Diaconis,et al.  Efficient computation of the Fourier transform on finite groups , 1990 .

[5]  Charles M. Rader,et al.  Fast transforms: Algorithms, analyses, applications , 1984 .

[6]  Frederick M. Goodman,et al.  Coxeter graphs and towers of algebras , 1989 .

[7]  Jørn B. Olsson,et al.  Fourier transforms with respect to monomial representations , 1993 .

[8]  D. Maslen Efficient computation of Fourier transforms on compact groups , 1998 .

[9]  Michael Clausen,et al.  Fast Generalized Fourier Transforms , 1989, Theor. Comput. Sci..

[10]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[11]  Daniel N. Rockmore,et al.  Efficient Computation of Isotypic Projections for the Symmetric Group 87 , 1991, Groups And Computation.

[12]  D. Rockmore,et al.  Generalized FFT's- A survey of some recent results , 1996, Groups and Computation.

[13]  Daniel N. Rockmore,et al.  Some applications of generalized FFT's , 1997, Groups and Computation.

[14]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[15]  Israel M. Gelfand,et al.  Finite-dimensional representations of the group of unimodular matrices , 1950 .

[16]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[17]  P. Diaconis Group representations in probability and statistics , 1988 .

[18]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[19]  M. Clausen,et al.  Fast Fourier transforms for symmetric groups : theory and implementation , 1993 .

[20]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[21]  A. Vershik,et al.  Locally semisimple algebras. Combinatorial theory and the K0-functor , 1987 .