Counting With Irrational Tiles

We introduce and study the number of tilings of unit height rectangles with irrational tiles. We prove that the class of sequences of these numbers coincides with the class of diagonals of N-rational generating functions and a class of certain binomial multisums. We then give asymptotic applications and establish connections to hypergeometric functions and Catalan numbers.

[1]  David Bruce Wilson,et al.  Generating random spanning trees more quickly than the cover time , 1996, STOC '96.

[2]  Mark C. Wilson,et al.  Analytic Combinatorics in Several Variables , 2013 .

[3]  Igor Pak,et al.  Generalized loop‐erased random walks and approximate reachability , 2014, Random Struct. Algorithms.

[4]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[5]  Bernard Dwork,et al.  An introduction to G-functions , 1994 .

[6]  Spyros S. Magliveras,et al.  The Number of Tilings of a Block with Blocks , 1988, Eur. J. Comb..

[7]  Michael Robert Korn Geometric and algebraic properties of polyomino tilings , 2004 .

[8]  John Riordan,et al.  Inverse Relations and Combinatorial Identities , 1964 .

[9]  Eric S. Rowland,et al.  Automatic congruences for diagonals of rational functions , 2013, ArXiv.

[10]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[11]  P. Chinn,et al.  Graphs of Tilings , 2022 .

[12]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[13]  Doron Zeilberger,et al.  Sister Celine's technique and its generalizations , 1982 .

[14]  Manuel Kauers,et al.  The complete Generating Function for Gessel Walks is Algebraic , 2009, ArXiv.

[15]  Regulare Sprachen,et al.  Regular Languages and Their Generating Functions: The Inverse Problem , 2005 .

[16]  Alin Bostan,et al.  Non-D-finite excursions in the quarter plane , 2012, J. Comb. Theory A.

[17]  William J. Cook,et al.  On integer points in polyhedra , 1992, Comb..

[18]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[19]  Christoph Koutschan,et al.  Regular languages and their generating functions: The inverse problem , 2008, Theor. Comput. Sci..

[20]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[21]  Eric Pin,et al.  Finite semigroups and recognizable languages: an introduction , 2002 .

[22]  Renzo Sprugnoli,et al.  Strip tiling and regular grammars , 2000, Theor. Comput. Sci..

[23]  Francesco Amoroso,et al.  Introduction to algebraic independence theory , 2001 .

[24]  C. Reutenauer,et al.  Noncommutative Rational Series with Applications , 2010 .

[25]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[26]  Hao Wang,et al.  Games, Logic and Computers , 1965 .

[27]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[28]  A. Bostan,et al.  Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity , 2012, 1211.6031.

[29]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[30]  Michael Drmota,et al.  Formulae and Asymptotics for Coefficients of Algebraic Functions , 2014, Combinatorics, Probability and Computing.

[31]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[32]  Stavros Garoufalidis,et al.  G-functions and multisum versus holonomic sequences , 2007, 0708.4354.

[33]  Generalized Ehrhart polynomials , 2010, 1002.3658.

[34]  Igor Pak,et al.  Non-commutative extensions of the MacMahon Master Theorem , 2006 .

[35]  Igor Pak,et al.  Tiling simply connected regions with rectangles , 2013, J. Comb. Theory, Ser. A.

[36]  Marko Petkovšek,et al.  A=B : 等式証明とコンピュータ , 1997 .

[37]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[38]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[39]  Nicholas A. Loehr,et al.  Tiling problems, automata, and tiling graphs , 2008, Theor. Comput. Sci..

[40]  Philippe Flajolet,et al.  On the Non-Holonomic Character of Logarithms, Powers, and the nth Prime Function , 2005, Electron. J. Comb..