Time-variant displacement structure and interpolation problems

Derives a new recursive solution for a general time-variant interpolation problem of the Hermite-Fejer type, based on a fast algorithm for the recursive triangular factorization of time-variant structured matrices. The solution follows from studying the properties of an associated cascade system and leads to a triangular array implementation of the recursive algorithm. The system can be drawn as a cascade of first-order lattice sections, where each section is composed of a rotation matrix followed by a storage element and a tapped-delay filter. Such cascades always have certain blocking properties, which can be made equivalent to the interpolation conditions. The authors also illustrate the application of the algorithm to problems in adaptive filtering, model validation, robust control, and analytic interpolation theory. >

[1]  Thomas Kailath,et al.  State-space approach to factorization of lossless transfer functions and structured matrices☆ , 1992 .

[2]  P. Khargonekar,et al.  H ∞ control of linear time-varying systems: a state-space approach , 1991 .

[3]  D. Alpay,et al.  Lossless Inverse Scattering and Reproducing Kernels for Upper Triangular Operators , 1990 .

[4]  W. Arveson Interpolation problems in nest algebras , 1975 .

[5]  Israel Gohberg,et al.  Time varying linear systems with boundary conditions and integral operators. I. The transfer operator and its properties , 1984 .

[6]  Brian D. O. Anderson,et al.  An interpolation theory approach to H∞ controller degree bounds , 1988 .

[7]  Ali H. Sayed,et al.  Time-variant displacement structure and triangular arrays , 1994, IEEE Trans. Signal Process..

[8]  Allen Tannenbaum,et al.  A STRONG PARROTT THEOREM , 1989 .

[9]  T. Kailath A Theorem of I. Schur and Its Impact on Modern Signal Processing , 1986 .

[10]  K. Poolla,et al.  A time-domain approach to model validation , 1994, IEEE Trans. Autom. Control..

[11]  Hidenori Kimura,et al.  Directional interpolation approach to H ∞ -Optimization and robust stabilization , 1987 .

[12]  P. Khargonekar,et al.  Stabilizability of linear time-varying and uncertain linear systems , 1988 .

[13]  L. Rodman,et al.  Interpolation of Rational Matrix Functions , 1990 .

[14]  Allen Tannenbaum,et al.  On the Four Block Problem, I , 1988 .

[15]  Patrick Dewilde,et al.  Interpolation for upper triangular operators , 1992 .

[16]  Lattice structures for time-variant interpolation problems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[17]  John Doyle,et al.  Model validation: a connection between robust control and identification , 1992 .

[18]  Israel Gohberg,et al.  A commutant lifting theorem for triangular matrices with diverse applications , 1985 .

[19]  Ali H. Sayed,et al.  Displacement Structure and Completion Problems , 1995, SIAM J. Matrix Anal. Appl..

[20]  Thomas Kailath,et al.  Linear Systems , 1980 .

[21]  T. Kailath,et al.  Recursive solutions of rational interpolation problems via fast matrix factorization , 1994 .

[22]  P. Khargonekar,et al.  Coprime Factorization for Linear Time-Varying Systems , 1988, 1988 American Control Conference.

[23]  Hugo J. Woerdeman,et al.  On the strong Parrott completion problem , 1993 .

[24]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[25]  A. Tannenbaum,et al.  On the four block problem, II: The singular system , 1988 .

[26]  T. Kailath,et al.  Recursive solutions to rational interpolation problems , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[27]  Thomas Kailath,et al.  Square-root algorithms for structured matrices, interpolation, and completion problems , 1995 .

[28]  B. Francis,et al.  Distance Formulas for Operator Algebras Arising in Optimal Control Problems , 1988 .

[29]  Bruce A. Francis,et al.  Uniformly optimal control of linear time-varying systems , 1984 .

[30]  M. A. Kaashoek,et al.  Nevanlinna-Pick interpolation for time-varying input-output maps: the discrete case , 1992 .

[31]  Thomas Kailath,et al.  Structured matrices and moment problems , 1993 .