Partially finite convex programming, Part II: Explicit lattice models

In Part I of this work we derived a duality theorem for partially finite convex programs, problems for which the standard Slater condition fails almost invariably. Our result depended on a constraint qualification involving the notion ofquasi relative interior. The derivation of the primal solution from a dual solution depended on the differentiability of the dual objective function: the differentiability of various convex functions in lattices was considered at the end of Part I. In Part II we shall apply our results to a number of more concrete problems, including variants of semi-infinite linear programming,L1 approximation, constrained approximation and interpolation, spectral estimation, semi-infinite transportation problems and the generalized market area problem of Lowe and Hurter (1976). As in Part I, we shall use lattice notation extensively, but, as we illustrated there, in concrete examples lattice-theoretic ideas can be avoided, if preferred, by direct calculation.

[1]  L. D. Irvine,et al.  Constrained interpolation and smoothing , 1986 .

[2]  J. Borwein,et al.  Duality relationships for entropy-like minimization problems , 1991 .

[3]  H. W. Corley,et al.  A Partitioning Problem with Applications in Regional Design , 1972, Oper. Res..

[4]  R. Rockafellar Integrals which are convex functionals. II , 1968 .

[5]  Kenneth O. Kortanek,et al.  Semi-infinite transportation problems , 1982 .

[6]  I. Singer Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces , 1970 .

[7]  Jonathan M. Borwein,et al.  A Lagrange multiplier theorem and a sandwich theorem for convex relations , 1981 .

[8]  Michael J. Todd Note--Solving the Generalized Market Area Problem , 1978 .

[9]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[10]  Gautam Appa,et al.  Linear Programming in Infinite-Dimensional Spaces , 1989 .

[11]  John R. Rice,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics (Samuel Karlin and William J. Studden) , 1967 .

[12]  R. Tyrrell Rockafellar Conjugate Duality and Optimization , 1974 .

[13]  Jonathan M. Borwein,et al.  A simple constraint qualification in infinite dimensional programming , 1986, Math. Program..

[14]  Carl de Boor,et al.  On “best” interpolation☆ , 1976 .

[15]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[16]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[17]  Michael J. Todd,et al.  Solving the generalized market area problem , 1978 .

[18]  Jonathan M. Borwein,et al.  Automatic continuity and openness of convex relations , 1987 .

[19]  Marc Teboulle,et al.  A dual approach to multidimensional L p spectral estimation problems , 1988 .

[20]  Timothy J. Lowe,et al.  The Generalized Market Area Problem , 1976 .

[21]  Charles A. Micchelli,et al.  ConstrainedLp approximation , 1985 .

[22]  H. H. Schaefer Banach Lattices and Positive Operators , 1975 .

[23]  Eugène Rouché Sur l'interpolation , 1859 .

[24]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[25]  Asen L. Dontchev,et al.  Duality and well-posedness in convex interpolation ∗) , 1989 .

[26]  M. Teboulle,et al.  Spectral Estimation Via Convex Programming , 1992 .

[27]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[28]  Richard L. Francis,et al.  Some duality relationships for the generalized Neyman-Pearson problem , 1969 .

[29]  Klaus Glashoff,et al.  Linear Optimization and Approximation , 1983 .

[30]  W. J. Studden,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .