Optimization by decomposition and coordination: A unified approach

In the general framework of inifinite-dimensional convex programming, two fundamental principles are demonstrated and used to derive several basic algorithms to solve a so-called "master" (constrained optimization) problem. These algorithms consist in solving an infinite sequence of "auxiliary" problems whose solutions converge to the master's optimal one. By making particular choices for the auxiliary problems, one can recover either classical algorithms (gradient, Newton-Raphson, Uzawa) or decomposition-coordination (two-level) algorithms. The advantages of the theory are that it clearly sets the connection between classical and two-level algorithms, It provides a framework for classifying the two-level algorithms, and it gives a systematic way of deriving new algorithms.