New theoretical bounds and constructions of permutation codes under block permutation metric
暂无分享,去创建一个
[1] Farzad Farnoud,et al. Multipermutation Codes in the Ulam Metric for Nonvolatile Memories , 2013, IEEE Journal on Selected Areas in Communications.
[2] Alexander Vardy,et al. Asymptotic Improvement of the Gilbert-Varshamov Bound on the Size of Permutation Codes , 2013, ArXiv.
[3] Sarit Buzaglo,et al. Bounds on the Size of Permutation Codes With the Kendall $\tau $ -Metric , 2014, IEEE Transactions on Information Theory.
[4] Alexander Vardy,et al. Asymptotic improvement of the Gilbert-Varshamov bound on the size of binary codes , 2004, IEEE Transactions on Information Theory.
[5] Yeow Meng Chee,et al. Breakpoint analysis and permutation codes in generalized Kendall tau and Cayley metrics , 2014, 2014 IEEE International Symposium on Information Theory.
[6] Lara Dolecek,et al. Theoretical Bounds and Constructions of Codes in the Generalized Cayley Metric , 2018, IEEE Transactions on Information Theory.
[7] Gennian Ge,et al. An Improvement on the Gilbert–Varshamov Bound for Permutation Codes , 2013, IEEE Transactions on Information Theory.
[8] Gennian Ge,et al. Snake-in-the-Box Codes for Rank Modulation Under Kendall’s $\tau $ -Metric , 2015, IEEE Transactions on Information Theory.
[9] Gennian Ge,et al. Snake-in-the-Box Codes for Rank Modulation under Kendall's τ-Metric in S2n+2 , 2016, IEEE Trans. Inf. Theory.
[10] Farzad Farnoud,et al. Error-Correction in Flash Memories via Codes in the Ulam Metric , 2012, IEEE Transactions on Information Theory.
[11] Béla Bollobás,et al. Random Graphs , 1985 .
[12] C. F. Kossack,et al. Rank Correlation Methods , 1949 .
[13] János Komlós,et al. A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.
[14] Xin Wang,et al. New bounds of permutation codes under Hamming metric and Kendall’s $$\tau $$τ-metric , 2016, Des. Codes Cryptogr..
[15] Timothy W. Tillson. A Hamiltonian decomposition of K2m*, 2m >= 8 , 1980, J. Comb. Theory B.
[16] Faruk Göloglu,et al. New bounds for permutation codes in Ulam metric , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).
[17] N. J. A. Sloane,et al. Lower bounds for constant weight codes , 1980, IEEE Trans. Inf. Theory.
[18] Timothy W. Tillson,et al. A Hamiltonian Decomposition of K & , 2 m > 8 , 2003 .
[19] Amy N. Myers. Counting Permutations by Their Rigid Patterns , 2002, J. Comb. Theory, Ser. A.
[20] Eitan Yaakobi,et al. Systematic Error-Correcting Codes for Permutations and Multi-Permutations , 2016, IEEE Transactions on Information Theory.