Restarts and Exponential Acceleration of the Davis–Putnam–Loveland–Logemann Algorithm: A Large Deviation Analysis of the Generalized Unit Clause Heuristic for Random 3-SAT

An analysis of the hardness of resolution of random 3-SAT instances using the Davis–Putnam–Loveland–Logemann (DPLL) algorithm slightly below threshold is presented. While finding a solution for such instances demands exponential effort with high probability, we show that an exponentially small fraction of resolutions require a computation scaling linearly in the size of the instance only. We compute analytically this exponentially small probability of easy resolutions from a large deviation analysis of DPLL with the Generalized Unit Clause search heuristic, and show that the corresponding exponent is smaller (in absolute value) than the growth exponent of the typical resolution time. Our study therefore gives some quantitative basis to heuristic restart solving procedures, and suggests a natural cut-off cost (the size of the instance) for the restart.

[1]  Michael Molloy,et al.  A sharp threshold in proof complexity , 2001, STOC '01.

[2]  Tad Hogg,et al.  The Hardest Constraint Problems: A Double Phase Transition , 1994, Artif. Intell..

[3]  Dimitris Achlioptas,et al.  Lower bounds for random 3-SAT via differential equations , 2001, Theor. Comput. Sci..

[4]  Jacques Carlier,et al.  SAT versus UNSAT , 1993, Cliques, Coloring, and Satisfiability.

[5]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[6]  Evangelos Kranakis,et al.  Rigorous results for random (2+p)-SAT , 2001, Theor. Comput. Sci..

[7]  Olivier Dubois,et al.  Typical random 3-SAT formulae and the satisfiability threshold , 2000, SODA '00.

[8]  Andrea Montanari,et al.  Optimizing searches via rare events. , 2002, Physical review letters.

[9]  Bart Selman,et al.  Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems , 2000, Journal of Automated Reasoning.

[10]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[11]  Lefteris M. Kirousis,et al.  The probabilistic analysis of a greedy satisfiability algorithm , 2002, Random Struct. Algorithms.

[12]  Ming-Te Chao,et al.  Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the k satisfiability problem , 1990, Inf. Sci..

[13]  Alan M. Frieze,et al.  Analysis of Two Simple Heuristics on a Random Instance of k-SAT , 1996, J. Algorithms.

[14]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[15]  Michael E. Saks,et al.  On the complexity of unsatisfiability proofs for random k-CNF formulas , 1998, STOC '98.

[16]  Bart Selman,et al.  Critical Behavior in the Computational Cost of Satisfiability Testing , 1996, Artif. Intell..

[17]  Michael Molloy,et al.  The analysis of a list-coloring algorithm on a random graph , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[18]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[19]  James M. Crawford,et al.  Experimental Results on the Crossover Point inSatis ability , 1993 .

[20]  R. Monasson,et al.  Exponentially hard problems are sometimes polynomial, a large deviation analysis of search algorithms for the random satisfiability problem, and its application to stop-and-restart resolutions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Ming-Te Chao,et al.  Probabilistic Analysis of Two Heuristics for the 3-Satisfiability Problem , 1986, SIAM J. Comput..

[22]  Devika Subramanian,et al.  Random 3-SAT: The Plot Thickens , 2000, CP.

[23]  R. Monasson,et al.  Statistical physics analysis of the computational complexity of solving random satisfiability problems using backtrack algorithms , 2000, cond-mat/0012191.

[24]  S Cocco,et al.  Trajectories in phase diagrams, growth processes, and computational complexity: how search algorithms solve the 3-satisfiability problem. , 2001, Physical review letters.

[25]  John V. Franco Results related to threshold phenomena research in satisfiability: lower bounds , 2001, Theor. Comput. Sci..

[26]  Alexander K. Hartmann,et al.  Typical solution time for a vertex-covering algorithm on finite-connectivity random graphs , 2001, Physical review letters.

[27]  Toby Walsh,et al.  Easy Problems are Sometimes Hard , 1994, Artif. Intell..

[28]  S. Kirkpatrick,et al.  2+p-SAT: relation of typical-case complexity to the nature of the phase transition , 1999 .

[29]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[30]  Hans van Maaren,et al.  Sat2000: Highlights of Satisfiability Research in the Year 2000 , 2000 .

[31]  R. Zecchina,et al.  Phase transitions in combinatorial problems , 2001 .

[32]  Tad Hogg,et al.  Phase Transitions and the Search Problem , 1996, Artif. Intell..

[33]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.