Chip-to-chip quantum photonic interconnect by path-polarization interconversion

Integrated photonics has enabled much progress toward quantum technologies. Many applications, e.g., quantum communication, sensing, and distributed cloud quantum computing, require coherent photonic interconnection between separate on-chip subsystems. Large-scale quantum computing architectures and systems may ultimately require quantum interconnects to enable scaling beyond the limits of a single wafer, and toward multi-chip systems. However, coherently connecting separate chips remains a challenge, due to the fragility of entangled quantum states. The distribution and manipulation of entanglement between multiple integrated devices is one of the strictest requirements of these systems. Here, we report, to the best of our knowledge, the first quantum photonic interconnect, demonstrating high-fidelity entanglement distribution and manipulation between two separate photonic chips, implemented using state-of-the-art silicon photonics. Path-entangled states are generated on one chip, and distributed to another chip by interconverting between path and polarization degrees of freedom, via a two-dimensional grating coupler on each chip. This path-to-polarization conversion allows entangled quantum states to be coherently distributed. We use integrated state analyzers to confirm a Bell-type violation of S=2.638±0.039 between the two chips. With further improvements in loss, this quantum photonic interconnect will provide new levels of flexibility in quantum systems and architectures.

[1]  Guifang Li Recent advances in coherent optical communication , 2009 .

[2]  Hiroki Takesue,et al.  Entanglement distribution over 300 km of fiber. , 2013, Optics express.

[3]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[4]  Benjamin J. Eggleton,et al.  Hybrid photonic circuit for multiplexed heralded single photons , 2014, 1402.7202.

[5]  Michael J. Strain,et al.  Micrometer-scale integrated silicon source of time-energy entangled photons , 2014, 1409.4881.

[6]  A. Politi,et al.  Manipulation of multiphoton entanglement in waveguide quantum circuits , 2009, 0911.1257.

[7]  A. Zeilinger,et al.  Communications: Quantum teleportation across the Danube , 2004, Nature.

[8]  P. Dumon,et al.  Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology , 2005, Journal of Lightwave Technology.

[9]  J. O'Brien,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2015, Nature Communications.

[10]  Mercedes Gimeno-Segovia,et al.  From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation. , 2014, Physical review letters.

[11]  Roberta Ramponi,et al.  Measuring protein concentration with entangled photons , 2011, 1109.3128.

[12]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[13]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[14]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[15]  N. Harris,et al.  Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems , 2014, 1409.8215.

[16]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[17]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[18]  Gregor Weihs,et al.  Monolithic source of photon pairs. , 2012, Physical review letters.

[19]  Jeremy L O'Brien,et al.  Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters , 2014, Nature Communications.

[20]  C. Roeloffzen,et al.  Compact and reconfigurable silicon nitride time-bin entanglement circuit , 2015, 1506.02758.

[21]  Ming C. Wu,et al.  Large-scale silicon photonic switches with movable directional couplers , 2015 .

[22]  Siyuan Yu,et al.  Integrated Compact Optical Vortex Beam Emitters , 2012, Science.

[23]  V. D'Ambrosio,et al.  Complete experimental toolbox for alignment-free quantum communication , 2012, Nature Communications.

[24]  J Eisert,et al.  Percolation, renormalization, and quantum computing with nondeterministic gates. , 2007, Physical review letters.

[25]  Frederic Boeuf,et al.  Design of Low-Loss Polarization Splitting Grating Couplers , 2014 .

[26]  J. O'Brien Optical Quantum Computing , 2007, Science.

[27]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[28]  C. M. Natarajan,et al.  Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits , 2012, 1201.6537.

[29]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[30]  Karol Bartkiewicz,et al.  Entanglement estimation from Bell inequality violation , 2013, 1306.6504.

[31]  Robert Fickler,et al.  Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information , 2014, Nature Communications.

[32]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[33]  Thomas Lorünser,et al.  High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. , 2007, Optics express.

[34]  Manfred Berroth,et al.  CMOS-Compatible Polarization Splitting Grating Couplers With a Backside Metal Mirror , 2013, IEEE Photonics Technology Letters.

[35]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[36]  John E. Bowers,et al.  Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects , 2014 .

[37]  G. Vallone,et al.  Integrated photonic quantum gates for polarization qubits , 2011, Nature communications.

[38]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature communications.

[39]  D. Ostrowsky,et al.  On the genesis and evolution of Integrated Quantum Optics , 2011, 1108.3162.

[40]  W. Munro,et al.  A monolithically integrated polarization entangled photon pair source on a silicon chip , 2012, Scientific Reports.

[41]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[42]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[43]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[44]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[45]  Shigehito Miki,et al.  High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler. , 2013, Optics express.

[46]  D. Taillaert,et al.  A compact two-dimensional grating coupler used as a polarization splitter , 2003, IEEE Photonics Technology Letters.

[47]  R. Prevedel,et al.  Quantum computing on encrypted data , 2013, Nature Communications.

[48]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[49]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[50]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[51]  Marco Barbieri,et al.  Quantum teleportation on a photonic chip , 2014, Nature Photonics.

[52]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[53]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[54]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[55]  J. Rarity,et al.  Experimental violation of Bell's inequality based on phase and momentum. , 1990, Physical review letters.

[56]  Jian-Wei Pan,et al.  Quantum teleportation and entanglement distribution over 100-kilometre free-space channels , 2012, Nature.

[57]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[58]  S. Massar,et al.  Silicon-on-insulator integrated source of polarization-entangled photons. , 2013, Optics letters.

[59]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[60]  S. Massar,et al.  Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. , 2009, Optics express.