Recent advances in oxygen deficient metal oxides: Opportunities as supercapacitor electrodes

Energy storage devices (ESD) are getting significant attention regarding their ability to reduce fossil fuel usage. Batteries and electrochemical supercapacitors are two well‐known ESDs with supercapacitors preferred for their high energy discharge potential. The metal oxides (MOs) with robust redox characteristics are ideal candidates for supercapacitors, although their capacitance still lacks behind the theoretical values. Here, partial reduced or oxygen‐deficient MOs have been identified have proven promising to reach the desired capacitance. The introduction of oxygen vacancies into MOs can effectively enhance their electrochemical properties without altering the inherent characteristics of MOs. This review discusses the recent progress on new oxygen‐deficient MOs and their performance as a supercapacitor. The importance of oxygen vacancy is described, followed by the traditional synthesis route to producing MOs. The present pathways for generating oxygen vacancies and their analytical assessment are covered in‐depth, followed by a section on the most advanced analytical techniques for detecting and interpreting the creation of such vacancies. The influence of oxygen vacancies on the supercapacitive performance of the most researched MOs is provided with the challenges and prospects of oxygen‐deficient MOs in supercapacitor application.

[1]  Zhaokun Yang,et al.  Oxygen Vacancy-Fe2O3@polyaniline Composites Directly Grown on Carbon Cloth as a High Stable Electrode for Symmetric Supercapacitors , 2021, Journal of Inorganic and Organometallic Polymers and Materials.

[2]  Dunmin Lin,et al.  An oxygen-deficient cobalt-manganese oxide nanowire doped with P designed for high performance asymmetric supercapacitor , 2021 .

[3]  Jie Huang,et al.  MoO2 nanoparticles confined in N,P-codoped graphene aerogels with excellent pseudocapacitance performance , 2021, Canadian Journal of Chemistry.

[4]  Guofu Zhou,et al.  Direct Growth of Oxygen Vacancy-Enriched Co3O4 Nanosheets on Carbon Nanotubes for High-Performance Supercapacitors. , 2021, ACS applied materials & interfaces.

[5]  Yanfang Gao,et al.  Boosted charge transfer in p-n heterojunctions LaMoO3/GQDs negative electrode for all-solid-state asymmetric supercapacitor , 2020 .

[6]  D. Ragupathy,et al.  Novel 1D polyaniline nanorods for efficient electrochemical supercapacitors: A facile and green approach , 2020 .

[7]  B. Wang,et al.  One-step synthesis of the reduced graphene oxide@NiO composites for supercapacitor electrodes by electrode-assisted plasma electrolysis , 2020 .

[8]  Yixuan Wang,et al.  Preparation and enhanced supercapacitance performance of carbonized silk by feeding silkworms MoO2 nanoparticles , 2020 .

[9]  J. Nowotny,et al.  Surface versus Bulk Defect-Related Properties of the Wüstite Phase (FeO) in Gas/Solid Equilibrium , 2020 .

[10]  Lin Gu,et al.  Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry , 2020, Nature Materials.

[11]  Kuldeep Singh,et al.  Nanostructured Polyaniline/Graphene/Fe2O3 Composites Hydrogel as a High-Performance Flexible Supercapacitor Electrode Material , 2020, ACS Applied Energy Materials.

[12]  H. Fan,et al.  Simple electrodeposition of MoO3 film on carbon cloth for high-performance aqueous symmetric supercapacitors , 2020 .

[13]  Haisheng Tao,et al.  Co-precipitation synthesis of nickel cobalt hexacyanoferrate for binder-free high-performance supercapacitor electrodes , 2020 .

[14]  Yudong Xue,et al.  A review of the α-Fe2O3 (hematite) nanotube structure: recent advances in synthesis, characterization, and applications. , 2020, Nanoscale.

[15]  Wuming Xie,et al.  Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid- l-ascorbic acid system , 2020 .

[16]  Wenning Gao,et al.  Oxygen vacancies enhance supercapacitive performance of CuCo2O4 in high-energy-density asymmetric supercapacitors , 2020 .

[17]  Yongfeng Li,et al.  In-situ formation of oxygen-vacancy-rich NiCo2O4/nitrogen-deficient graphitic carbon nitride hybrids for high-performance supercapacitors , 2020 .

[18]  Xiaoping Zhou,et al.  Preparation of ball‐flower‐like MoS 2 as a superior electrode for pseudocapacitor , 2020, Micro & Nano Letters.

[19]  Xin Li,et al.  Efficient charge transfer in aluminum-cobalt layered double hydroxide derived from Co-ZIF for enhanced catalytic degradation of tetracycline through peroxymonosulfate activation , 2020 .

[20]  T. Centeno,et al.  Unravelling the volumetric performance of activated carbons from biomass wastes in supercapacitors , 2020 .

[21]  Zumin Qiu,et al.  Facile fabrication of oxygen vacancy-rich α-Fe2O3 microspheres on carbon cloth as negative electrode for supercapacitors , 2020 .

[22]  R. Zou,et al.  Fabrication of Oxygen‐Vacancy Abundant NiMn‐Layered Double Hydroxides for Ultrahigh Capacity Supercapacitors , 2020, Advanced Functional Materials.

[23]  Fusheng Liu,et al.  Wearable pseudocapacitor based on porous MnO2 composite , 2020 .

[24]  Aitang Zhang,et al.  Hierarchical NiMn-layered double hydroxides@CuO core-shell heterostructure in-situ generated on Cu(OH)2 nanorod arrays for high performance supercapacitors , 2020 .

[25]  Yibing Xie,et al.  Supercapacitive performance of CoMoO4 with oxygen vacancy porous nanosheet , 2020 .

[26]  P. Taberna,et al.  Facile and Scalable Preparation of Ruthenium Oxide‐Based Flexible Micro‐Supercapacitors , 2019, Advanced Energy Materials.

[27]  Waheed S. Khan,et al.  Polyaniline-Based Supercapacitor Applications , 2019 .

[28]  S. Jun,et al.  New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors , 2019, Energy Storage Materials.

[29]  W. Fei,et al.  Oxygen-vacancy-rich nickel-cobalt layered double hydroxide electrode for high-performance supercapacitors. , 2019, Journal of colloid and interface science.

[30]  K. Ryu,et al.  Synthesis of MnO2 nanostructures with MnS-deposits for high performance supercapacitor electrodes , 2019, New Journal of Chemistry.

[31]  Xi‐Wen Du,et al.  Laser-induced oxygen vacancies in FeCo2O4 nanoparticles for boosting oxygen evolution and reduction. , 2019, Chemical communications.

[32]  Jing Xu,et al.  A high-performance asymmetric supercapacitor electrode based on a three-dimensional ZnMoO4/CoO nanohybrid on nickel foam. , 2019, Nanoscale.

[33]  Xingzhong Zhao,et al.  Aldehyde reduced Co3O4 to form oxygen vacancy and enhance the electrochemical performance for oxygen evolution reaction and supercapacitors , 2019, Nanotechnology.

[34]  C. Nan,et al.  Oxygen vacancy-enriched MoO3−x nanobelts for asymmetric supercapacitors with excellent room/low temperature performance , 2019, Journal of Materials Chemistry A.

[35]  Chen Li,et al.  Fe2O3 Nanoparticles Decorated on Graphene-Carbon Nanotubes Conductive Networks for Boosting the Energy Density of All-Solid-State Asymmetric Supercapacitor , 2019, ACS Sustainable Chemistry & Engineering.

[36]  Gurmeet Singh,et al.  Highly oxygen deficient, bimodal mesoporous silica based supercapacitor with enhanced charge storage characteristics , 2019, Electrochimica Acta.

[37]  P. Liu,et al.  Ultrahigh volumetric capacitance and cycle stability via structure design and synergistic action between CoMoO4 nanosheets and 3D porous Ni-Co film , 2019, Applied Surface Science.

[38]  Yutao Li,et al.  Metal oxide/graphene composite anode materials for sodium-ion batteries , 2019, Energy Storage Materials.

[39]  G. Cao,et al.  Gradient Oxygen Vacancies in V2O5/PEDOT Nanocables for High-Performance Supercapacitors , 2018, ACS Applied Energy Materials.

[40]  C. Zhi,et al.  Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co3O4@polypyrrole core–shell nanorod bundle array electrodes , 2018 .

[41]  S. Ramakrishna,et al.  Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis. , 2018, Journal of the American Chemical Society.

[42]  Juan Sun,et al.  Metal-Organic Framework Derived Spindle-like Carbon Incorporated α-Fe2O3 Grown on Carbon Nanotube Fiber as Anodes for High-Performance Wearable Asymmetric Supercapacitors. , 2018, ACS nano.

[43]  Jun Wang,et al.  Hierarchical NiCo2S4@CoMoO4 core-shell heterostructures nanowire arrays as advanced electrodes for flexible all-solid-state asymmetric supercapacitors , 2018, Applied Surface Science.

[44]  Lei Zhang,et al.  Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions , 2018, Chemical Engineering Journal.

[45]  Xiaowei Mu,et al.  A current collector covering nanostructured villous oxygen-deficient NiO fabricated by rapid laser-scan for Li-O2 batteries , 2018, Nano Energy.

[46]  Jungwoo Oh,et al.  Remarkable Enhancement of Electrochemical Performance by the Oxygen Vacancy and Nitrogen Doping in ZnCo2O4 Nanowire Arrays , 2018, ACS Applied Energy Materials.

[47]  G. Cao,et al.  A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors , 2018 .

[48]  H. Arandiyan,et al.  Improved lithium storage properties of Co3O4 nanoparticles via laser irradiation treatment , 2018, Electrochimica Acta.

[49]  C. Zhang,et al.  A biomimetic Setaria viridis-inspired electrode with polyaniline nanowire arrays aligned on MoO3@polypyrrole core–shell nanobelts , 2018 .

[50]  P. Simon,et al.  Direct Laser Writing of Graphene Made from Chemical Vapor Deposition for Flexible, Integratable Micro‐Supercapacitors with Ultrahigh Power Output , 2018, Advances in Materials.

[51]  H. Alshareef,et al.  Phosphine plasma activation of α-Fe2O3 for high energy asymmetric supercapacitors , 2018, Nano Energy.

[52]  Shuangyin Wang,et al.  Defect‐Enhanced Charge Separation and Transfer within Protection Layer/Semiconductor Structure of Photoanodes , 2018, Advanced materials.

[53]  Hongying Quan,et al.  Tetsubo-like α-Fe2O3/C nanoarrays on carbon cloth as negative electrode for high-performance asymmetric supercapacitors , 2018, Chemical Engineering Journal.

[54]  Ibrahim Saana Amiinu,et al.  Electronic Structure Control of Tungsten Oxide Activated by Ni for Ultrahigh-Performance Supercapacitors. , 2018, Small.

[55]  Ru Chen,et al.  Plasma‐Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy , 2018, Advanced materials.

[56]  N. Li,et al.  O-Vacancy-enriched NiO hexagonal platelets fabricated on Ni foam as a self-supported electrode for extraordinary pseudocapacitance , 2018 .

[57]  N. Kim,et al.  Hierarchical nanohoneycomb-like CoMoO4–MnO2 core–shell and Fe2O3 nanosheet arrays on 3D graphene foam with excellent supercapacitive performance , 2018 .

[58]  Huaiguo Xue,et al.  FeOx‐Based Materials for Electrochemical Energy Storage , 2018, Advanced science.

[59]  S. De,et al.  One-dimensional α-MoO3 nanorods for high energy density pseudocapacitor , 2018 .

[60]  Li Tang,et al.  Hierarchical nanostructured α-Fe2O3/polyaniline anodes for high performance supercapacitors , 2018 .

[61]  Yadong Li,et al.  Tuning defects in oxides at room temperature by lithium reduction , 2018, Nature Communications.

[62]  Keon Jae Lee,et al.  Laser Processing of Metal Oxides: Laser Irradiation of Metal Oxide Films and Nanostructures: Applications and Advances (Adv. Mater. 14/2018) , 2018 .

[63]  K. Landskron Capacitance for Carbon Capture. , 2018, Angewandte Chemie.

[64]  Xiaobo Ji,et al.  Multidimensional Evolution of Carbon Structures Underpinned by Temperature‐Induced Intermediate of Chloride for Sodium‐Ion Batteries , 2018, Advanced science.

[65]  Xingjiu Huang,et al.  High Electrochemical Sensitivity of TiO2- x Nanosheets and an Electron-Induced Mutual Interference Effect toward Heavy Metal Ions Demonstrated Using X-ray Absorption Fine Structure Spectra. , 2018, Analytical chemistry.

[66]  Chao-lun Liang,et al.  Achieving Insertion‐Like Capacity at Ultrahigh Rate via Tunable Surface Pseudocapacitance , 2018, Advanced materials.

[67]  Chao-lun Liang,et al.  Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudocapacitors in large scale , 2018 .

[68]  Weiqi Wang,et al.  NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor , 2018 .

[69]  Zhihong Zhu,et al.  Construction of Core-Shell NiMoO4@Ni-Co-S Nanorods as Advanced Electrodes for High-Performance Asymmetric Supercapacitors. , 2018, ACS applied materials & interfaces.

[70]  Xin Wang,et al.  Yolk–shell-structured MnO2 microspheres with oxygen vacancies for high-performance supercapacitors , 2018 .

[71]  S. Kandasamy,et al.  Recent Advances in Electrochemical Performances of Graphene Composite (Graphene-Polyaniline/Polypyrrole/Activated Carbon/Carbon Nanotube) Electrode Materials for Supercapacitor: A Review , 2018, Journal of Inorganic and Organometallic Polymers and Materials.

[72]  N. Kim,et al.  Zn-doped SnO2 nano-urchin-enriched 3D carbonaceous framework for supercapacitor application , 2018 .

[73]  W. Goddard,et al.  Oxygen‐Vacancy Abundant Ultrafine Co3O4/Graphene Composites for High‐Rate Supercapacitor Electrodes , 2018, Advanced science.

[74]  Huijie Hou,et al.  Facile preparation of flower-like NiMn layered double hydroxide/reduced graphene oxide microsphere composite for high-performance asymmetric supercapacitors , 2018 .

[75]  Jie Li,et al.  Films of WO3 plate-like arrays with oxygen vacancies proportionally controlled via rapid chemical reduction , 2018 .

[76]  G. Shen,et al.  Nanowire-assembled Co3O4@NiCo2O4 architectures for high performance all-solid-state asymmetric supercapacitors , 2017 .

[77]  Kan Wang,et al.  Hierarchical NiAl LDH nanotubes constructed via atomic layer deposition assisted method for high performance supercapacitors , 2017 .

[78]  Xuefeng Guo,et al.  Two dimensional oxygen-vacancy-rich Co3O4 nanosheets with excellent supercapacitor performances. , 2017, Chemical communications.

[79]  Jianhua Liu,et al.  Polyhedral-Like NiMn-Layered Double Hydroxide/Porous Carbon as Electrode for Enhanced Electrochemical Performance Supercapacitors. , 2017, Small.

[80]  Wei Quan,et al.  New nanocomposite material as supercapacitor electrode prepared via restacking of Ni-Mn LDH and MnO2 nanosheets , 2017 .

[81]  Lina Ma,et al.  Oxygen‐Deficient Bismuth Oxide/Graphene of Ultrahigh Capacitance as Advanced Flexible Anode for Asymmetric Supercapacitors , 2017 .

[82]  Guangwen Chen,et al.  Oxygen vacancy enhanced catalytic activity of reduced Co3O4 towards p-nitrophenol reduction , 2017 .

[83]  Christopher W. Foster,et al.  Oxygen Vacancies Evoked Blue TiO2(B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors , 2017 .

[84]  Ling Wang,et al.  Fabrication of Metal Molybdate Micro/Nanomaterials for Electrochemical Energy Storage. , 2017, Small.

[85]  M. Qian,et al.  Conductive Carbon Nitride for Excellent Energy Storage , 2017, Advanced materials.

[86]  Zongping Shao,et al.  Molecular Design of Mesoporous NiCo2O4 and NiCo2S4 with Sub‐Micrometer‐Polyhedron Architectures for Efficient Pseudocapacitive Energy Storage , 2017 .

[87]  Yue Zhang,et al.  3D architecture of a graphene/CoMoO(4) composite for asymmetric supercapacitors usable at various temperatures. , 2017, Journal of colloid and interface science.

[88]  Zhonghua Zhu,et al.  Ultrathin Iron‐Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction , 2017, Advanced materials.

[89]  Yat Li,et al.  Oxygen defective metal oxides for energy conversion and storage , 2017 .

[90]  Yang Li,et al.  Fe2O3 Nanoneedles on Ultrafine Nickel Nanotube Arrays as Efficient Anode for High‐Performance Asymmetric Supercapacitors , 2017 .

[91]  Bruce Dunn,et al.  Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. , 2017, Nature materials.

[92]  Xiaoqin Yan,et al.  Developing a facile method to construct 3D hierarchical CoMoO4@C@MnO2 core-shell structure aligned on Ni foam with enhanced pseudocapacitive performances , 2017 .

[93]  Jinping Liu,et al.  Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects , 2017, Advanced science.

[94]  B. Han,et al.  Serpent-cactus-like Co-doped Ni(OH)2/Ni3S2 hierarchical structure composed of ultrathin nanosheets for use in efficient asymmetric supercapacitors , 2017 .

[95]  Xingbao Zhu,et al.  Strontium doped lanthanum manganite/manganese dioxide composite electrode for supercapacitor with enhanced rate capability , 2016 .

[96]  Huibin Lu,et al.  Toward Switchable Photovoltaic Effect via Tailoring Mobile Oxygen Vacancies in Perovskite Oxide Films. , 2016, ACS applied materials & interfaces.

[97]  Xiaodong He,et al.  Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications. , 2016, ACS applied materials & interfaces.

[98]  Jun Wan,et al.  Microwave Combustion for Modification of Transition Metal Oxides , 2016, 2016 Asia Communications and Photonics Conference (ACP).

[99]  Q. Lu,et al.  A novel pseudocapacitance mechanism of elm seed-like mesoporous MoO3−x nanosheets as electrodes for supercapacitors , 2016 .

[100]  S. S. Patil,et al.  Asymmetric Supercapacitor Based on Nanostructured Ce‐doped NiO (Ce:NiO) as Positive and Reduced Graphene Oxide (rGO) as Negative Electrode , 2016 .

[101]  Ü. Alver,et al.  Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors , 2016 .

[102]  Xingcheng Xiao,et al.  Graphene‐Based Nanocomposites for Energy Storage , 2016 .

[103]  W. Mai,et al.  Flexible honeycomb-like NiMn layered double hydroxide/carbon cloth architecture for electrochemical energy storage , 2016 .

[104]  Xi Cao,et al.  Macroporous Nanostructured Nb2O5 with Surface Nb4+ for Enhanced Lithium Ion Storage Properties , 2016 .

[105]  Yan Zhao,et al.  Preparation of MnCo2O4@Ni(OH)2 Core–Shell Flowers for Asymmetric Supercapacitor Materials with Ultrahigh Specific Capacitance , 2016 .

[106]  L. Dai,et al.  Plasma-Engraved Co3 O4 Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. , 2016, Angewandte Chemie.

[107]  Yong-Sheng Hu,et al.  Batteries: Getting solid , 2016, Nature Energy.

[108]  Yongfu Tang,et al.  All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials , 2016, Scientific Reports.

[109]  Hee Jo Song,et al.  High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes , 2016, Nano Research.

[110]  Xiaohua Ma,et al.  Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors , 2016 .

[111]  S. Joo,et al.  Oxygen Vacancy-Induced Structural, Optical, and Enhanced Supercapacitive Performance of Zinc Oxide Anchored Graphitic Carbon Nanofiber Hybrid Electrodes. , 2016, ACS applied materials & interfaces.

[112]  Peihua Huang,et al.  On-chip and freestanding elastic carbon films for micro-supercapacitors , 2016, Science.

[113]  Hongbing Lu,et al.  Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for high-performance supercapacitors , 2016, Nano Research.

[114]  Yongsam Kim,et al.  Onset potential behavior in α-Fe2O3 photoanodes: the influence of surface and diffusion Sn doping on the surface states. , 2016, Physical chemistry chemical physics : PCCP.

[115]  Fei Xiao,et al.  Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites. , 2016, Nano letters.

[116]  F. N. Ani,et al.  Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review , 2015 .

[117]  U. Schubert,et al.  Microwave synthesis of carbon nanofibers – the influence of MW irradiation power, time, and the amount of catalyst , 2015 .

[118]  G. Hegde,et al.  Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications – a review , 2015 .

[119]  Xiaobo Ji,et al.  Alternating Voltage Introduced NiCo Double Hydroxide Layered Nanoflakes for an Asymmetric Supercapacitor. , 2015, ACS applied materials & interfaces.

[120]  I. Kinloch,et al.  Mesoporous Vertical Co3O4 Nanosheet Arrays on Nitrogen-Doped Graphene Foam with Enhanced Charge-Storage Performance. , 2015, ACS applied materials & interfaces.

[121]  Chi-Chang Hu,et al.  Local structure distortion induced by Ti dopants boosting the pseudocapacitance of RuO2-based supercapacitors. , 2015, Nanoscale.

[122]  B. Kale,et al.  In situ preparation of N–ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode , 2015 .

[123]  Dongyun Zhang,et al.  Enhanced electrochemical performance of oxygen-deficient Li4Ti5O12−x anode material induced by graphene oxide , 2015 .

[124]  L. Wan,et al.  Insight into the Effect of Oxygen Vacancy Concentration on the Catalytic Performance of MnO2 , 2015 .

[125]  Jun Yang,et al.  Carbon/carbon nanotube-supported RuO2 nanoparticles with a hollow interior as excellent electrode materials for supercapacitors , 2015 .

[126]  Yang Bai,et al.  Controllable synthesis of 3D binary nickel–cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors , 2015 .

[127]  Jianjun Jiang,et al.  Enhanced electrochemical performance by facile oxygen vacancies from lower valence-state doping for ramsdellite-MnO2 , 2015 .

[128]  Y. Tong,et al.  Valence‐Optimized Vanadium Oxide Supercapacitor Electrodes Exhibit Ultrahigh Capacitance and Super‐Long Cyclic Durability of 100 000 Cycles , 2015 .

[129]  Minghao Yu,et al.  Advanced Ti‐Doped Fe2O3@PEDOT Core/Shell Anode for High‐Energy Asymmetric Supercapacitors , 2015 .

[130]  Y. Ikuhara,et al.  Assessment of Strain-Generated Oxygen Vacancies Using SrTiO₃ Bicrystals. , 2015, Nano letters.

[131]  Guowei Yang,et al.  All-Solid-State Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene. , 2015, ACS nano.

[132]  C. Richter,et al.  Reversible oxygen scavenging at room temperature using electrochemically reduced titanium oxide nanotubes. , 2015, Nature nanotechnology.

[133]  Prashanth H. Jampani,et al.  High energy density titanium doped-vanadium oxide-vertically aligned CNT composite electrodes for supercapacitor applications , 2015 .

[134]  Mietek Jaroniec,et al.  Polymeric Photocatalysts Based on Graphitic Carbon Nitride , 2015, Advanced materials.

[135]  Y. Tong,et al.  Investigation of hematite nanorod–nanoflake morphological transformation and the application of ultrathin nanoflakes for electrochemical devices , 2015 .

[136]  Ning Pan,et al.  Supercapacitors Performance Evaluation , 2015 .

[137]  Wei Zhang,et al.  Nitrogen-treated Hierarchical Macro-/Mesoporous TiO2 Used as Anode Materials for Lithium Ion Batteries with High Performance at Elevated Temperatures , 2015 .

[138]  Zhiyong Tang,et al.  Growth of Polypyrrole Ultrathin Films on MoS2 Monolayers as High‐Performance Supercapacitor Electrodes , 2015, Advanced materials.

[139]  Lei Liu,et al.  Sub-3 nm Co3O4 nanofilms with enhanced supercapacitor properties. , 2015, ACS nano.

[140]  Yunhui Zhao,et al.  Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode , 2015 .

[141]  Bing Sun,et al.  Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction , 2015, Scientific Reports.

[142]  R. Jayavel,et al.  Synthesis of graphene oxide/vanadium pentoxide composite nanofibers by electrospinning for supercapacitor applications , 2014 .

[143]  Y. Jiao,et al.  Hybrid α-Fe2O3@NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts , 2014 .

[144]  Xiaona Zhang,et al.  Unveiling the dynamic capacitive storage mechanism of Co3O4 @NiCo2O4 hybrid nanoelectrodes for supercapacitor applications , 2014 .

[145]  Gengfeng Zheng,et al.  Reduced Mesoporous Co3O4 Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes , 2014 .

[146]  I. Tanaka,et al.  Oxygen vacancy formation and reduction properties of β-MnO2 grain boundaries and the potential for high electrochemical performance. , 2014, ACS applied materials & interfaces.

[147]  Yunhui Huang,et al.  Freestanding MoO3−x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors , 2014 .

[148]  Z. Xia,et al.  Enhancement effect of Na ions on capacitive behavior of amorphous MnO2 , 2014 .

[149]  Xiaofeng Wang,et al.  Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors , 2014 .

[150]  Y. Tong,et al.  A New Benchmark Capacitance for Supercapacitor Anodes by Mixed‐Valence Sulfur‐Doped V6O13−x , 2014, Advanced materials.

[151]  Y. Tong,et al.  Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors , 2014 .

[152]  Yu Huang,et al.  Holey graphene frameworks for highly efficient capacitive energy storage , 2014, Nature Communications.

[153]  Bai-yun Huang,et al.  Synthesis of Marks‐Decahedral Pd Nanoparticles in Aqueous Solutions , 2014 .

[154]  A. Krasheninnikov,et al.  Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. , 2014, Angewandte Chemie.

[155]  Rujia Zou,et al.  MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors , 2014 .

[156]  S. Pennock,et al.  Manufacturing and characterization of Magnéli phase conductive fibres , 2014 .

[157]  B. Pan,et al.  Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. , 2014, Journal of the American Chemical Society.

[158]  W. Schreiner,et al.  Supercapacitor Electrodes Obtained by Directly Bonding 2D MoS2 on Reduced Graphene Oxide , 2014 .

[159]  Yong Liu,et al.  Graphene-based nanowire supercapacitors. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[160]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[161]  He Zhou,et al.  Electrochemically Self-Doped TiO2 Nanotube Arrays for Supercapacitors , 2014 .

[162]  S. C. Parker,et al.  Rutile (β-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance. , 2014, Journal of the American Chemical Society.

[163]  F. Prinz,et al.  Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. , 2014, Nano letters.

[164]  Yong Ding,et al.  Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. , 2014, Nano letters.

[165]  R. Che,et al.  One‐Step Fabrication of Ultrathin Porous Nickel Hydroxide‐Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance , 2013 .

[166]  Shui-Tong Lee,et al.  Electronic structure of MoO3−x/graphene interface , 2013 .

[167]  A. Manthiram,et al.  A rapid microwave-assisted solvothermal approach to lower-valent transition metal oxides. , 2013, Inorganic chemistry.

[168]  James D. Blakemore,et al.  Co3O4 Nanoparticle Water-Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids , 2013 .

[169]  He Zhou,et al.  Enhancing the capacitance of TiO2 nanotube arrays by a facile cathodic reduction process , 2013 .

[170]  U. Diebold,et al.  Reaction of O2 with Subsurface Oxygen Vacancies on TiO2 Anatase (101) , 2013, Science.

[171]  Yuanyuan Li,et al.  A carbon modified MnO2 nanosheet array as a stable high-capacitance supercapacitor electrode , 2013 .

[172]  Zheng Zhang,et al.  Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor , 2013, Scientific Reports.

[173]  Tao Ling,et al.  A top–down strategy towards monodisperse colloidal lead sulphide quantum dots , 2013, Nature Communications.

[174]  Guofeng Ren,et al.  Highly conductive VO2 treated with hydrogen for supercapacitors. , 2013, Chemical communications.

[175]  Jacob L. Jones,et al.  Correlation Between Oxygen Vacancy, Microstrain, and Cation Distribution in Lithium-Excess Layered Oxides During the First Electrochemical Cycle , 2013 .

[176]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[177]  A. Hirata,et al.  Enhanced supercapacitor performance of MnO2 by atomic doping. , 2013, Angewandte Chemie.

[178]  Min Wei,et al.  Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. , 2013, Small.

[179]  M. Strano,et al.  Enhanced Charge Carrier Mobility in Two‐Dimensional High Dielectric Molybdenum Oxide , 2013, Advanced materials.

[180]  Guozhong Cao,et al.  Hydrogenated Li4Ti5O12 Nanowire Arrays for High Rate Lithium Ion Batteries , 2012, Advanced materials.

[181]  Hui‐Ming Cheng,et al.  Graphene‐Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities , 2012 .

[182]  P. Chu,et al.  Identification of oxygen vacancy types from Raman spectra of SnO2 nanocrystals , 2012 .

[183]  M. Antonietti,et al.  Synthesis of monolayer-patched graphene from glucose. , 2012, Angewandte Chemie.

[184]  Yuping Wu,et al.  Core–Shell Structure of Polypyrrole Grown on V2O5 Nanoribbon as High Performance Anode Material for Supercapacitors , 2012 .

[185]  Maiyong Zhu,et al.  Hydrothermal Synthesis of Hematite Nanoparticles and Their Electrochemical Properties , 2012 .

[186]  S. Zein,et al.  MULTIWALLED CARBON NANOTUBES BASED NANOCOMPOSITES FOR SUPERCAPACITORS: A REVIEW OF ELECTRODE MATERIALS , 2012 .

[187]  Gleb Yushin,et al.  Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes , 2012 .

[188]  Lin Gu,et al.  Evidence for a crucial role played by oxygen vacancies in LaMnO3 resistive switching memories. , 2012, Small.

[189]  M. Chan-Park,et al.  3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. , 2012, ACS nano.

[190]  Jingwen Zhao,et al.  Core–Shell Layered Double Hydroxide Microspheres with Tunable Interior Architecture for Supercapacitors , 2012 .

[191]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[192]  Nathan T. Hahn,et al.  Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. , 2012, Journal of the American Chemical Society.

[193]  Bo Gao,et al.  Enhanced high-current capacitive behavior of graphene/CoAl-layered double hydroxide composites as electrode material for supercapacitors , 2012 .

[194]  Ning Zhang,et al.  Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light , 2011 .

[195]  H. Dai,et al.  Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. , 2011, Nature materials.

[196]  Xiaoyan Qin,et al.  Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol , 2011 .

[197]  A. Kuwabara,et al.  Oxygen-vacancy ordering at surfaces of lithium manganese(III,IV) oxide spinel nanoparticles. , 2011, Angewandte Chemie.

[198]  P. Patil,et al.  CuO-PAA hybrid films: Chemical synthesis and supercapacitor behavior , 2011 .

[199]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[200]  H. Ohta,et al.  Atomic structure of a CeO2 grain boundary: the role of oxygen vacancies. , 2010, Nano letters.

[201]  E. Higuchi,et al.  Preparation and characterization of Ni-based positive electrodes for use in aqueous electrochemical capacitors , 2010 .

[202]  Tao Wu,et al.  Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. , 2010, Journal of the American Chemical Society.

[203]  M. Weyland,et al.  Direct Evidence for Cation Non‐Stoichiometry and Cottrell Atmospheres Around Dislocation Cores in Functional Oxide Interfaces , 2010, Advanced materials.

[204]  H. Cui,et al.  From nanocrystal synthesis to functional nanostructure fabrication: laser ablation in liquid. , 2010, Physical chemistry chemical physics : PCCP.

[205]  Lei Xie,et al.  Plasma‐Assisted Approaches in Inorganic Nanostructure Fabrication , 2010, Advanced materials.

[206]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[207]  G. Cao,et al.  TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation , 2009 .

[208]  M. Toyoda,et al.  Preparation of carbon-coated Magneli phases TinO2n―1 and their photocatalytic activity under visible light , 2009 .

[209]  S. Devi,et al.  Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent , 2009 .

[210]  I. Mulla,et al.  Influence of Pd doping on morphology and LPG response of SnO2 , 2008 .

[211]  V. Obreja,et al.  On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review , 2008 .

[212]  Patrice Simon,et al.  New Materials and New Configurations for Advanced Electrochemical Capacitors , 2008 .

[213]  Z. Dong,et al.  Application of layered double hydroxides for removal of oxyanions: a review. , 2008, Water research.

[214]  M. Armand,et al.  Building better batteries , 2008, Nature.

[215]  L. Mai,et al.  Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries , 2007 .

[216]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[217]  S. K. Pradhan,et al.  Annealing effect on nano-ZnO powder studied from positron lifetime and optical absorption spectroscopy , 2006 .

[218]  Mathieu Toupin,et al.  Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors , 2006 .

[219]  J. Nowotny,et al.  TiO2 surface active sites for water splitting. , 2006, The journal of physical chemistry. B.

[220]  Annabella Selloni,et al.  Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. , 2005, The journal of physical chemistry. B.

[221]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[222]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[223]  Lynn,et al.  Increased Elemental Specificity of Positron Annihilation Spectra. , 1996, Physical review letters.

[224]  Zhiliang Jin,et al.  Oxygen-vacancy-rich cobalt–aluminium hydrotalcite structures served as high-performance supercapacitor cathode , 2020 .

[225]  Materials for Supercapacitor Applications , 2020 .

[226]  Xiao‐Qing Yang,et al.  Single‐Crystalline Ultrathin Co3O4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis , 2018 .

[227]  Xiaodong Chen,et al.  Stretchable Supercapacitors: Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO2 Nanowire Composite (Adv. Mater. 2/2018) , 2018 .

[228]  Wei Liu,et al.  Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives , 2017, Advanced materials.

[229]  Y. Li,et al.  3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors , 2016 .

[230]  G. Stucky,et al.  Nickel oxide encapsulated nitrogen-rich carbon hollow spheres with multiporosity for high-performance pseudocapacitors having extremely robust cycle life , 2015 .

[231]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[232]  H. Alshareef,et al.  Microfabricated Pseudocapacitors Using Ni(OH)2 Electrodes Exhibit Remarkable Volumetric Capacitance and Energy Density , 2015 .

[233]  Xingbao Zhu,et al.  A preliminary study of the pseudo-capacitance features of strontium doped lanthanum manganite , 2015 .

[234]  Y. Tong,et al.  Oxygen‐Deficient Hematite Nanorods as High‐Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors , 2014, Advanced materials.

[235]  D. Aurbach,et al.  The Study of Activated Carbon/CNT/MoO3 Electrodes for Aqueous Pseudo-Capacitors , 2013 .

[236]  S. Mohapatra,et al.  The role of nanomaterial for the design of supercapacitor , 2012 .

[237]  N. Umezawa,et al.  Self-doped SrTiO 3 d photocatalyst with enhanced activity for artificial photosynthesis under visible light † , 2011 .

[238]  J. Ellenbogen,et al.  Supercapacitors : A Brief Overview , 2006 .

[239]  J. Hanson,et al.  Experimental and theoretical studies on the reaction of H(2) with NiO: role of O vacancies and mechanism for oxide reduction. , 2002, Journal of the American Chemical Society.