A Comparison Of Optimization Software For Mesh Shape-Quality Improvement Problems

Simplicial mesh shape-quality can be improved by optimizing an objective function based on tetrahedral shape measures. If the objective function is formulated in terms of all elements in a given mesh rather than a local patch, one is confronted with a large-scale, nonlinear, constrained numerical optimization problem. We investigate the use of six general-purpose state-of-the-art solvers and two custom-developed methods to solve the resulting large-scale problem. The performance of each method is evaluated in terms of robustness, time to solution, convergence properties, and scalability on several two- and three-dimensional test cases.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  A. Liu,et al.  On the shape of tetrahedra from bisection , 1994 .

[3]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[4]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[5]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[6]  Gustavo C. Buscaglia,et al.  OPTIMIZATION STRATEGIES IN UNSTRUCTURED MESH GENERATION , 1996 .

[7]  Trond Steihaug,et al.  Truncated-newtono algorithms for large-scale unconstrained optimization , 1983, Math. Program..

[8]  C Chen,et al.  Optimization of unstructured grid , 1995 .

[9]  Mark S. Shephard,et al.  Automatic three-dimensional mesh generation by the finite octree technique , 1984 .

[10]  D. White,et al.  Improved vector FEM solutions of Maxwell's equations using grid pre-conditioning , 1997 .

[11]  P. Knupp Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated qu , 2000 .

[12]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[13]  R. K. Smith,et al.  Mesh Smoothing Using A Posteriori Error Estimates , 1997 .

[14]  L. Freitag,et al.  Tetrahedral mesh improvement via optimization of the element condition number , 2002 .

[15]  Patrick M. Knupp A method for hexahedral mesh shape optimization , 2003 .

[16]  José E. Castillo,et al.  A Discrete Variational Grid Generation Method , 1991, SIAM J. Sci. Comput..

[17]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[18]  H. Sherali,et al.  Conjugate gradient methods using quasi-Newton updates with inexact line searches , 1990 .

[19]  Nicholas I. M. Gould,et al.  Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .

[20]  T. L. Edwards,et al.  CUBIT mesh generation environment. Volume 1: Users manual , 1994 .

[21]  B. Joe,et al.  Relationship between tetrahedron shape measures , 1994 .

[22]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[23]  V. Parthasarathy,et al.  A constrained optimization approach to finite element mesh smoothing , 1991 .

[24]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[25]  E. Amezua,et al.  A method for the improvement of 3D solid finite-element meshes , 1995 .

[26]  L. Freitag,et al.  Local optimization-based simplicial mesh untangling and improvement. , 2000 .

[27]  Michael A. Saunders,et al.  MINOS 5. 0 user's guide , 1983 .

[28]  Carl Ollivier-Gooch,et al.  A comparison of tetrahedral mesh improvement techniques , 1996 .

[29]  Olivier-Pierre Jacquotte Grid Optimization Methods for Quality Improvement and Adaptation , 1998 .

[30]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.