Fast Algorithms for Digital Computation of Linear Canonical Transforms

Fast and accurate algorithms for digital computation of linear canonical transforms (LCTs) are discussed. Direct numerical integration takes O(N2) time, where N is the number of samples. Designing fast and accurate algorithms that take \(O(N\log N)\) time is of importance for practical utilization of LCTs. There are several approaches to designing fast algorithms. One approach is to decompose an arbitrary LCT into blocks, all of which have fast implementations, thus obtaining an overall fast algorithm. Another approach is to define a discrete LCT (DLCT), based on which a fast LCT (FLCT) is derived to efficiently compute LCTs. This strategy is similar to that employed for the Fourier transform, where one defines the discrete Fourier transform (DFT), which is then computed with the fast Fourier transform (FFT). A third, hybrid approach involves a DLCT but employs a decomposition-based method to compute it. Algorithms for two-dimensional and complex parametered LCTs are also discussed.

[1]  F. Hlawatsch,et al.  Linear and quadratic time-frequency signal representations , 1992, IEEE Signal Processing Magazine.

[2]  Mj Martin Bastiaans The Wigner distribution function and Hamilton's characteristics of a geometric-optical system , 1979 .

[3]  John J Healy,et al.  Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms. , 2010, Optics letters.

[4]  K. Wolf,et al.  Fractional Fourier-Kravchuk transform , 1997 .

[5]  M. F. Erden,et al.  Relationships among ray optical, Gaussian beam, and fractional Fourier transform descriptions of first-order optical systems , 1997 .

[6]  A A Malyutin Complex-order fractional Fourier transforms in optical schemes with Gaussian apertures , 2004 .

[7]  Tatiana Alieva,et al.  Classification of lossless first-order optical systems and the linear canonical transformation. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  K. K. Sharma,et al.  Fractional Laplace transform , 2010, Signal Image Video Process..

[9]  D. Griffiths,et al.  Waves in locally periodic media , 2001 .

[10]  Carlos Ferreira,et al.  Fast algorithms for free-space diffraction patterns calculation , 1999 .

[11]  G. Folland Harmonic analysis in phase space , 1989 .

[12]  Laurence Barker Continuum quantum systems as limits of discrete quantum systems. IV. Affine canonical transforms , 2003 .

[13]  Kurt Bernardo Wolf Canonical transforms. II. Complex radial transforms , 1974 .

[14]  Riccardo Pratesi,et al.  Generalized Gaussian beams in free space , 1977 .

[15]  Juan G. Vargas-Rubio,et al.  On the multiangle centered discrete fractional Fourier transform , 2005, IEEE Signal Processing Letters.

[16]  John T. Sheridan,et al.  Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. , 1994, Optics letters.

[17]  Antonio G. García,et al.  New sampling formulae for the fractional Fourier transform , 1999, Signal Process..

[18]  Tomaso Erseghe,et al.  The fractional discrete cosine transform , 2002, IEEE Trans. Signal Process..

[19]  Cagatay Candan,et al.  Digital Computation of Linear Canonical Transforms , 2008, IEEE Transactions on Signal Processing.

[20]  David Mendlovic,et al.  Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions , 1995 .

[21]  K. Wolf FINITE SYSTEMS ON PHASE SPACE , 2006 .

[22]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[23]  Rafael G. Campos,et al.  A fast algorithm for the linear canonical transform , 2009, Signal Process..

[24]  John J. Healy,et al.  Sampling and discretization of the linear canonical transform , 2009, Signal Process..

[25]  A. Stern Why is the Linear Canonical Transform so little known , 2006 .

[26]  John T. Sheridan,et al.  Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  Sevinç Figen Öktem Signal representation and recovery under partial information, redundancy, and generalized finite extent constraints , 2009 .

[28]  Lambertus Hesselink,et al.  Fast and accurate algorithm for the computation of complex linear canonical transforms. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Donald W. L. Sprung,et al.  Scattering by a finite periodic potential , 1993 .

[30]  J. Sheridan,et al.  Cases where the linear canonical transform of a signal has compact support or is band-limited. , 2008, Optics letters.

[31]  Soo-Chang Pei,et al.  Closed-form discrete fractional and affine Fourier transforms , 2000, IEEE Trans. Signal Process..

[32]  Guofan Jin,et al.  Improved fast fractional-Fourier-transform algorithm. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  Eugeny Abramochkin,et al.  Generalized Gaussian beams , 2004 .

[34]  G. Folland Harmonic Analysis in Phase Space. (AM-122), Volume 122 , 1989 .

[35]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[36]  Cagatay Candan,et al.  The discrete fractional Fourier transform , 2000, IEEE Trans. Signal Process..

[37]  K. Wolf Finite systems, fractional Fourier transforms and their finite phase spaces , 2005 .

[38]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[39]  Y. S. Kim,et al.  ABCD matrices as similarity transformations of Wigner matrices and periodic systems in optics. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[40]  C Jung,et al.  Representation of quantum mechanical wavefunctions by complex valued extensions of classical canonical transformation generators , 1982 .

[41]  M. L. Calvo,et al.  Gyrator transform: properties and applications. , 2007, Optics express.

[42]  Cagatay Candan,et al.  Sampling and series expansion theorems for fractional Fourier and other transforms , 2003, Signal Process..

[43]  Mj Martin Bastiaans The Wigner distribution function applied to optical signals and systems , 1978 .

[44]  D Mendlovic,et al.  Optical implementations of two-dimensional fractional fourier transforms and linear canonical transforms with arbitrary parameters. , 1998, Applied optics.

[45]  José A. Rodrigo,et al.  Applications of gyrator transform for image processing , 2007 .

[46]  Changtao Wang,et al.  Implementation of complex-order Fourier transforms in complex ABCD optical systems , 2002 .

[47]  Girish S. Agarwal,et al.  The generalized Fresnel transform and its application to optics , 1996 .

[48]  Chien-Cheng Tseng,et al.  Discrete fractional Fourier transform based on orthogonal projections , 1999, IEEE Trans. Signal Process..

[49]  K. Wolf,et al.  Wigner distribution function for finite systems , 1998 .

[50]  Aykut Koç,et al.  Efficient computation of quadratic-phase integrals in optics. , 2006, Optics letters.

[51]  Billur Barshan,et al.  Optimal filtering with linear canonical transformations , 1997 .

[52]  Tatiana Alieva,et al.  Properties of the linear canonical integral transformation. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[53]  Francisco J. Marinho,et al.  Numerical calculation of fractional Fourier transforms with a single fast-Fourier-transform algorithm , 1998 .

[54]  Luís M. Bernardo Talbot self-imaging in fractional Fourier planes of real and complex orders , 1997 .

[55]  Soo-Chang Pei,et al.  Eigenfunctions of linear canonical transform , 2002, IEEE Trans. Signal Process..

[56]  Soo-Chang Pei,et al.  Fractional Fourier series expansion for finite signals and dual extension to discrete-time fractional Fourier transform , 1999, IEEE Trans. Signal Process..

[57]  Y. S. Kim,et al.  Lens optics as an optical computer for group contractions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  L. L. Sanchez-Soto,et al.  Vector-like representation of one-dimensional scattering , 2004, quant-ph/0411081.

[59]  José A Rodrigo,et al.  Experimental implementation of the gyrator transform. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[60]  K. Wolf,et al.  Geometry and dynamics in the fractional discrete Fourier transform. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[61]  K. Wolf,et al.  Structure of the set of paraxial optical systems. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[62]  Myung K. Kim,et al.  Digital computation of the complex linear canonical transform. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  Y S Kim,et al.  Slide-rule-like property of Wigner's little groups and cyclic S matrices for multilayer optics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Min-Hung Yeh Angular decompositions for the discrete fractional signal transforms , 2005, Signal Process..

[65]  Gozde Bozdagi Akar,et al.  Digital computation of the fractional Fourier transform , 1996, IEEE Trans. Signal Process..

[66]  Kurt Bernardo Wolf,et al.  On self-reciprocal functions under a class of integral transforms , 1977 .

[67]  M. Bastiaans,et al.  Synthesis of an arbitrary ABCD system with fixed lens positions. , 2006, Optics letters.

[68]  Mj Martin Bastiaans Wigner distribution function and its application to first-order optics , 1979 .

[69]  Brian Davies,et al.  Integral transforms and their applications , 1978 .

[70]  Amalia Torre Linear and radial canonical transforms of fractional order , 2003 .

[71]  Soo-Chang Pei,et al.  Improved implementation algorithms of the two-dimensional nonseparable linear canonical transform. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[72]  John J Healy,et al.  Fast linear canonical transforms. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[73]  K. Brenner,et al.  Minimal optical decomposition of ray transfer matrices. , 2008, Applied optics.

[74]  Tatiana Alieva,et al.  Alternative representation of the linear canonical integral transform. , 2005, Optics letters.

[75]  J. Sheridan,et al.  Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation an operator approach , 1994 .

[76]  Mj Martin Bastiaans Application of the Wigner distribution function in optics , 1997 .

[77]  Joseph Shamir,et al.  First-order optics—a canonical operator representation: lossless systems , 1982 .

[78]  Lambertus Hesselink,et al.  Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[79]  Tomaso Erseghe,et al.  Unified fractional Fourier transform and sampling theorem , 1999, IEEE Trans. Signal Process..

[80]  David Mendlovic,et al.  Design of dynamically adjustable anamorphic fractional Fourier transformer , 1997 .

[81]  Zeev Zalevsky,et al.  Computation considerations and fast algorithms for calculating the diffraction integral , 1997 .

[82]  J. Hua,et al.  Extended fractional Fourier transforms , 1997 .

[83]  Figen S. Oktem,et al.  Exact Relation Between Continuous and Discrete Linear Canonical Transforms , 2009, IEEE Signal Processing Letters.

[84]  Bryan M Hennelly,et al.  Fast numerical algorithm for the linear canonical transform. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[85]  Tatiana Alieva,et al.  Rotation and gyration of finite two-dimensional modes. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[86]  Imam Samil Yetik,et al.  Continuous and discrete fractional Fourier domain decomposition , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[87]  R. Dorsch,et al.  Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm. , 1996, Applied optics.

[88]  L M Bernardo,et al.  Optical fractional Fourier transforms with complex orders. , 1996, Applied optics.

[89]  Christiane Quesne,et al.  Linear Canonical Transformations and Their Unitary Representations , 1971 .

[90]  Orhan Arikan,et al.  The fractional Fourier domain decomposition , 1999, Signal Process..

[91]  M. Moshinsky,et al.  Canonical Transformations and Quantum Mechanics , 1973 .

[92]  S. Pei,et al.  Improved discrete fractional Fourier transform. , 1997, Optics letters.

[93]  Haldun M Ozaktas,et al.  Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[94]  José A Rodrigo,et al.  Optical system design for orthosymplectic transformations in phase space. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[95]  C. Shih,et al.  Optical interpretation of a complex-order Fourier transform. , 1995, Optics letters.

[96]  K. Wolf,et al.  Continuous vs. discrete fractional Fourier transforms , 1999 .

[97]  Kurt Bernardo Wolf,et al.  Construction and Properties of Canonical Transforms , 1979 .

[98]  Ying Liu,et al.  Fast Evaluation of Canonical Oscillatory Integrals , 2012 .

[99]  Bryan M Hennelly,et al.  Additional sampling criterion for the linear canonical transform. , 2008, Optics letters.

[100]  C. Palma,et al.  Extension of the Fresnel transform to ABCD systems , 1997 .

[101]  Soo-Chang Pei,et al.  The discrete fractional cosine and sine transforms , 2001, IEEE Trans. Signal Process..

[102]  Peter Kramer,et al.  Complex Extensions of Canonical Transformations and Quantum Mechanics , 1975 .