Air-core fiber distribution of hybrid vector vortex-polarization entangled states

Abstract. Entanglement distribution between distant parties is one of the most important and challenging tasks in quantum communication. Distribution of photonic entangled states using optical fiber links is a fundamental building block toward quantum networks. Among the different degrees of freedom, orbital angular momentum (OAM) is one of the most promising due to its natural capability to encode high dimensional quantum states. We experimentally demonstrate fiber distribution of hybrid polarization-vector vortex entangled photon pairs. To this end, we exploit a recently developed air-core fiber that supports OAM modes. High fidelity distribution of the entangled states is demonstrated by performing quantum state tomography in the polarization-OAM Hilbert space after fiber propagation and by violations of Bell inequalities and multipartite entanglement tests. The results open new scenarios for quantum applications where correlated complex states can be transmitted by exploiting the vectorial nature of light.

[1]  G. Vallone,et al.  Free-space quantum key distribution by rotation-invariant twisted photons. , 2014, Physical review letters.

[2]  Wei Zhang,et al.  Entanglement swapping with independent sources over an optical-fiber network , 2016, 1606.07503.

[3]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[4]  Hiroki Takesue,et al.  Entanglement distribution over 300 km of fiber. , 2013, Optics express.

[5]  Nicolai Friis,et al.  Entanglement certification from theory to experiment , 2018, Nature Reviews Physics.

[6]  Thomas Lorünser,et al.  High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. , 2007, Optics express.

[7]  Guang-Can Guo,et al.  Distribution of high-dimensional orbital angular momentum entanglement at telecom wavelength over 1km of optical fibre , 2018 .

[8]  A. Forbes,et al.  Fiber propagation of vector modes. , 2015, Optics express.

[9]  B. M. Fulk MATH , 1992 .

[10]  L. Marrucci,et al.  Tunable supercontinuum light vector vortex beam generator using a q-plate. , 2013, Optics letters.

[11]  Christian Kurtsiefer,et al.  Complete deterministic linear optics Bell state analysis. , 2006, Physical review letters.

[12]  F. Fatemi,et al.  Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems. , 2011, Optics express.

[13]  D. Nolan,et al.  Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light. , 2011, Physical review letters.

[14]  L. Hardy,et al.  Nonlocality for two particles without inequalities for almost all entangled states. , 1993, Physical review letters.

[15]  N. Spagnolo,et al.  Experimental Engineering of Arbitrary Qudit States with Discrete-Time Quantum Walks. , 2018, Physical review letters.

[16]  L. Hardy,et al.  Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. , 1992, Physical review letters.

[17]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.

[18]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[19]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[20]  M. Peev,et al.  Practical quantum key distribution with polarization entangled photons , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[21]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[22]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[23]  V. D'Ambrosio,et al.  Complete experimental toolbox for alignment-free quantum communication , 2012, Nature Communications.

[24]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[25]  Enrico Santamato,et al.  Joining the quantum state of two photons into one , 2013, Nature Photonics.

[26]  Fabio Sciarrino,et al.  Symmetry Protection of Photonic Entanglement in the Interaction with a Single Nanoaperture. , 2016, Physical review letters.

[27]  Ronald J Sadlier,et al.  Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements. , 2016, Physical review letters.

[28]  T Honjo,et al.  Long-distance entanglement-based quantum key distribution over optical fiber. , 2008, Optics express.

[29]  N. Gisin,et al.  Long-distance entanglement-based quantum key distribution , 2000, quant-ph/0008039.

[30]  A. Forbes,et al.  Measuring the nonseparability of vector vortex beams , 2015 .

[31]  Zhi-Qiang Jiao,et al.  Mapping Twisted Light into and out of a Photonic Chip. , 2018, Physical review letters.

[32]  G. Adesso,et al.  Measures and applications of quantum correlations , 2016, 1605.00806.

[33]  Robert Fickler,et al.  Quantum cryptography with structured photons through a vortex fiber. , 2018, Optics letters.

[34]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[35]  L. Marrucci,et al.  Polarization pattern of vector vortex beams generated by q-plates with different topological charges. , 2012, Applied optics.

[36]  Fabio Sciarrino,et al.  Teleportation of a vacuum--one-photon qubit. , 2002, Physical review letters.

[37]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[38]  Charalambos Klitis,et al.  Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters , 2017, Light: Science & Applications.

[39]  Ebrahim Karimi,et al.  Quantum information transfer from spin to orbital angular momentum of photons. , 2008, Physical review letters.

[40]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[41]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[42]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[43]  Siyuan Yu,et al.  Integrated Compact Optical Vortex Beam Emitters , 2012, Science.

[44]  A. V. Belinskii,et al.  Interference of light and Bell's theorem , 1993 .

[45]  V. Scarani,et al.  Bell-type inequalities to detect true n-body nonseparability. , 2002, Physical review letters.

[46]  Jian Wang,et al.  Supermode fiber for orbital angular momentum (OAM) transmission. , 2015, Optics express.

[47]  E. Karimi,et al.  Efficient optical trapping with cylindrical vector beams. , 2019, Optics express.

[48]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[49]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[50]  Zhi-Qiang Jiao,et al.  Underwater transmission of high-dimensional twisted photons over 55 meters , 2019, 1902.01392.

[51]  William J. Munro,et al.  On the measurement of qubits , 2005 .

[52]  Q. Zhan Cylindrical vector beams: from mathematical concepts to applications , 2009 .

[53]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[54]  Fabio Sciarrino,et al.  Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory , 2015, Nature Communications.

[55]  Michael Galili,et al.  Fiber based high-dimensional quantum communication with twisted photons , 2018, 1803.10138.

[56]  Ying Li,et al.  Photonic polarization gears for ultra-sensitive angular measurements , 2013, Nature Communications.

[57]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[58]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[59]  V. Verma,et al.  Heralded quantum steering over a high-loss channel , 2016, Science Advances.

[60]  Robert Fickler,et al.  Twisted photons: new quantum perspectives in high dimensions , 2017, Light: Science & Applications.

[61]  Leif Katsuo Oxenløwe,et al.  Orbital Angular Momentum States Enabling Fiber-based High-dimensional Quantum Communication , 2018, Physical Review Applied.

[62]  Isaac Nape,et al.  Creation and Detection of Vector Vortex Modes for Classical and Quantum Communication , 2017, Journal of Lightwave Technology.

[63]  EIF,et al.  12 mode , WDM , MIMO-free orbital angular momentum transmission , 2018 .

[64]  Matej Pivoluska,et al.  Measurements in two bases are sufficient for certifying high-dimensional entanglement , 2017, Nature Physics.

[65]  A. Zeilinger,et al.  Communication with spatially modulated light through turbulent air across Vienna , 2014, 1402.2602.

[66]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[67]  H. Bechmann-Pasquinucci,et al.  Quantum Cryptography using larger alphabets , 1999, quant-ph/9910095.

[68]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[69]  Stefano Pironio,et al.  Device-independent witnesses of genuine multipartite entanglement. , 2011, Physical review letters.

[70]  Fabio Sciarrino,et al.  Experimental investigation on the geometry of GHZ states , 2017, Scientific Reports.

[71]  G. Leuchs,et al.  Quantum−like nonseparable structures in optical beams , 2015 .

[72]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[73]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[74]  Ebrahim Karimi,et al.  Spin-orbit hybrid entanglement of photons and quantum contextuality , 2010, 1103.3962.

[75]  Rupert Ursin,et al.  Experimental delayed-choice entanglement swapping , 2012 .

[76]  N. Gisin,et al.  Long-distance teleportation of qubits at telecommunication wavelengths , 2003, Nature.

[77]  Sophie LaRochelle,et al.  Design, fabrication and validation of an OAM fiber supporting 36 states. , 2014, Optics express.

[78]  S. Ramachandran,et al.  Conservation of orbital angular momentum in air core optical fibers , 2014 .

[79]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[80]  Toshio Morioka,et al.  12 mode, WDM, MIMO-free orbital angular momentum transmission. , 2018, Optics express.

[81]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[82]  Ebrahim Karimi,et al.  Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications , 2011 .

[83]  K. Toussaint,et al.  Optical trapping with π-phase cylindrical vector beams , 2010 .

[84]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[85]  Mark R. Dennis,et al.  Singular optics: optical vortices and polarization singularities , 2009 .

[86]  Hong-Yi Su,et al.  Generalized Hardy's Paradox. , 2017, Physical review letters.

[87]  Robert Fickler,et al.  Quantum cryptography with twisted photons through an outdoor underwater channel. , 2018, Optics express.

[88]  Ardehali Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[89]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[90]  G. Vallone,et al.  Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement , 2006, quant-ph/0609080.

[91]  Robert Fickler,et al.  Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons , 2018, Quantum.

[92]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[93]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[94]  Chiara Vitelli,et al.  Entangled vector vortex beams , 2016 .

[95]  Kimani C Toussaint,et al.  Three-dimensional polarization control in microscopy. , 2006, Physical review letters.

[96]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.