Spontaneous local membrane curvature induced by transmembrane proteins

[1]  D. Tieleman,et al.  Insights into lipid-protein interactions from computer simulations , 2021, Biophysical Reviews.

[2]  D. Thirumalai,et al.  Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing , 2018, Nature Communications.

[3]  Kristyna Pluhackova,et al.  Closely related, yet unique: Distinct homo- and heterodimerization patterns of G protein coupled chemokine receptors and their fine-tuning by cholesterol , 2018, PLoS Comput. Biol..

[4]  G. Khelashvili,et al.  Determination of bending rigidity and tilt modulus of lipid membranes from real-space fluctuation analysis of molecular dynamics simulations. , 2017, Physical chemistry chemical physics : PCCP.

[5]  Søren L Pedersen,et al.  Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. , 2017, Nature chemical biology.

[6]  R. Böckmann,et al.  Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface. , 2017, Journal of chemical theory and computation.

[7]  Kristyna Pluhackova,et al.  The Multifaceted Role of SNARE Proteins in Membrane Fusion , 2017, Front. Physiol..

[8]  Aimee L Boyle,et al.  A Coiled-Coil Peptide Shaping Lipid Bilayers upon Fusion. , 2016, Biophysical journal.

[9]  S. Munro,et al.  Finding the Golgi: Golgin Coiled-Coil Proteins Show the Way. , 2016, Trends in cell biology.

[10]  E. Mastrobattista,et al.  Coiled coil interactions for the targeting of liposomes for nucleic acid delivery. , 2016, Nanoscale.

[11]  R. Turner,et al.  Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones. , 2016, Biochimica et biophysica acta.

[12]  Natalia Gomez-Navarro,et al.  COP-coated vesicles , 2016, Current Biology.

[13]  L. Hamoen,et al.  Transmembrane protein sorting driven by membrane curvature , 2015, Nature Communications.

[14]  Liangyi Chen,et al.  Faculty Opinions recommendation of Lipid cell biology. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. , 2015 .

[15]  A. Callan-Jones,et al.  IRSp53 senses negative membrane curvature and phase separates along membrane tubules , 2015, Nature Communications.

[16]  Yonatan Schweitzer,et al.  A Model for Shaping Membrane Sheets by Protein Scaffolds. , 2015, Biophysical journal.

[17]  M. A. Del Pozo,et al.  Caveolae – mechanosensitive membrane invaginations linked to actin filaments , 2015, Journal of Cell Science.

[18]  J. Briggs,et al.  A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly , 2015, Science.

[19]  S. Svetina Curvature-dependent protein–lipid bilayer interaction and cell mechanosensitivity , 2015, European Biophysics Journal.

[20]  Helgi I. Ingólfsson,et al.  Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. , 2015, Journal of chemical theory and computation.

[21]  D. Tieleman,et al.  High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach. , 2015, Journal of chemical theory and computation.

[22]  E. Boucrot,et al.  Membrane curvature at a glance , 2015, Journal of Cell Science.

[23]  S. Svetina,et al.  Sorting of integral membrane proteins mediated by curvature-dependent protein-lipid bilayer interaction. , 2015, Soft matter.

[24]  S. Hell,et al.  Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains , 2015, Nature Communications.

[25]  S. Kurisu,et al.  Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. , 2014, Physiological reviews.

[26]  J. Dittman,et al.  Membrane curvature sensing by the C-terminal domain of complexin , 2014, Nature Communications.

[27]  S. Vanni,et al.  A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment , 2014, Nature Communications.

[28]  Michael G. Lerner,et al.  Determination of Biomembrane Bending Moduli in Fully Atomistic Simulations , 2014, Journal of the American Chemical Society.

[29]  C. Sorzano,et al.  3D cryo-electron reconstruction of BmrA, a bacterial multidrug ABC transporter in an inward-facing conformation and in a lipidic environment. , 2014, Journal of molecular biology.

[30]  D. Leister,et al.  Structure and dynamics of thylakoids in land plants. , 2014, Journal of experimental botany.

[31]  Siewert J Marrink,et al.  Mechanisms shaping cell membranes. , 2014, Current opinion in cell biology.

[32]  M. Kozlov,et al.  Sensing Membrane Stresses by Protein Insertions , 2014, PLoS Comput. Biol..

[33]  Paul J Atzberger,et al.  Shape matters in protein mobility within membranes , 2014, Proceedings of the National Academy of Sciences.

[34]  I. Luque,et al.  CURT1,CAAD-containing aaRSs, thylakoid curvature and gene translation. , 2014, Trends in plant science.

[35]  A. Callan-Jones,et al.  Membrane shape modulates transmembrane protein distribution. , 2014, Developmental cell.

[36]  Siewert J Marrink,et al.  Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models. , 2014, Journal of chemical theory and computation.

[37]  Bert L. de Groot,et al.  Computational analysis of local membrane properties , 2013, Journal of Computer-Aided Molecular Design.

[38]  G. Romet-Lemonne,et al.  Mechanotransduction down to individual actin filaments. , 2013, European journal of cell biology.

[39]  Gerhard Wanner,et al.  Arabidopsis CURVATURE THYLAKOID1 Proteins Modify Thylakoid Architecture by Inducing Membrane Curvature[W] , 2013, Plant Cell.

[40]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[41]  C. Etchebest,et al.  Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues. , 2013, Biophysical journal.

[42]  W F Drew Bennett,et al.  Improved Parameters for the Martini Coarse-Grained Protein Force Field. , 2013, Journal of chemical theory and computation.

[43]  Vinzenz M Unger,et al.  Membrane curvature and its generation by BAR proteins. , 2012, Trends in biochemical sciences.

[44]  Bruno Antonny,et al.  Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. , 2012, Developmental cell.

[45]  W. Kühlbrandt,et al.  Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae , 2012, Proceedings of the National Academy of Sciences.

[46]  Alexander P Lyubartsev,et al.  An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. , 2012, Journal of chemical theory and computation.

[47]  Ron O. Dror,et al.  Mechanism of Voltage Gating in Potassium Channels , 2012, Science.

[48]  Alexander P. Lyubartsev,et al.  Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids , 2012, The journal of physical chemistry. B.

[49]  O. G. Mouritsen,et al.  Lipids, curvature, and nano-medicine* , 2011, European journal of lipid science and technology : EJLST.

[50]  Daniel L. Parton,et al.  Aggregation of model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class. , 2011, Biophysical journal.

[51]  Bruno Antonny,et al.  Mechanisms of membrane curvature sensing. , 2011, Annual review of biochemistry.

[52]  S. Schmid,et al.  Differential curvature sensing and generating activities of dynamin isoforms provide opportunities for tissue-specific regulation , 2011, Proceedings of the National Academy of Sciences.

[53]  A. Callan-Jones,et al.  Curvature-driven lipid sorting in biomembranes. , 2011, Cold Spring Harbor perspectives in biology.

[54]  U. Schmidt,et al.  Hydrophobic mismatch-induced clustering as a primer for protein sorting in the secretory pathway. , 2010, Biophysical chemistry.

[55]  G. Drin,et al.  Amphipathic helices and membrane curvature , 2010, FEBS letters.

[56]  R. Dror,et al.  Improved side-chain torsion potentials for the Amber ff99SB protein force field , 2010, Proteins.

[57]  Adrian H. Elcock,et al.  Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm , 2010, PLoS Comput. Biol..

[58]  P. Bassereau,et al.  Membrane curvature controls dynamin polymerization , 2010, Proceedings of the National Academy of Sciences.

[59]  J. Groves The physical chemistry of membrane curvature. , 2009, Nature chemical biology.

[60]  N. Hatzakis,et al.  How curved membranes recruit amphipathic helices and protein anchoring motifs. , 2009, Nature chemical biology.

[61]  William J. Allen,et al.  GridMAT‐MD: A grid‐based membrane analysis tool for use with molecular dynamics , 2009, J. Comput. Chem..

[62]  Kumaran S Ramamurthi,et al.  Negative membrane curvature as a cue for subcellular localization of a bacterial protein , 2009, Proceedings of the National Academy of Sciences.

[63]  J. Errington,et al.  Localisation of DivIVA by targeting to negatively curved membranes , 2009, The EMBO journal.

[64]  Frederic A. Fellouse,et al.  Crystal structure of full-length KcsA in its closed conformation , 2009, Proceedings of the National Academy of Sciences.

[65]  Howard A. Stone,et al.  Geometric Cue for Protein Localization in a Bacterium , 2009, Science.

[66]  Erik Lindahl,et al.  Conformational Changes and Slow Dynamics through Microsecond Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel , 2009, PLoS Comput. Biol..

[67]  R. MacKinnon,et al.  Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane , 2008, Proceedings of the National Academy of Sciences.

[68]  B. Roux,et al.  Atomic Constraints between the Voltage Sensor and the Pore Domain in a Voltage-gated K+ Channel of Known Structure , 2008, The Journal of general physiology.

[69]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[70]  D. Engelman,et al.  Protein area occupancy at the center of the red blood cell membrane , 2008, Proceedings of the National Academy of Sciences.

[71]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[72]  Tony Yeung,et al.  Membrane Phosphatidylserine Regulates Surface Charge and Protein Localization , 2008, Science.

[73]  E. Campbell,et al.  Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment , 2007, Nature.

[74]  Benoît Roux,et al.  Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment. , 2007, Biophysical journal.

[75]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[76]  Sumio Sugano,et al.  Curved EFC/F-BAR-Domain Dimers Are Joined End to End into a Filament for Membrane Invagination in Endocytosis , 2007, Cell.

[77]  Olaf S Andersen,et al.  Bilayer thickness and membrane protein function: an energetic perspective. , 2007, Annual review of biophysics and biomolecular structure.

[78]  G. Drin,et al.  A general amphipathic α-helical motif for sensing membrane curvature , 2007, Nature Structural &Molecular Biology.

[79]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[80]  J. Groves,et al.  Curvature and spatial organization in biological membranes. , 2006, Soft matter.

[81]  M. Deserno,et al.  Coupling between lipid shape and membrane curvature. , 2006, Biophysical journal.

[82]  Michael M. Kozlov,et al.  How proteins produce cellular membrane curvature , 2006, Nature Reviews Molecular Cell Biology.

[83]  D. Murray,et al.  Plasma membrane phosphoinositide organization by protein electrostatics , 2005, Nature.

[84]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[85]  G. Drin,et al.  ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif , 2005, The EMBO journal.

[86]  B. Peter,et al.  BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure , 2004, Science.

[87]  M. Cadene,et al.  X-ray structure of a voltage-dependent K+ channel , 2003, Nature.

[88]  S. Smerdon,et al.  The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways , 2001, Nature.

[89]  Michael W. Mahoney,et al.  A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions , 2000 .

[90]  G A Perkins,et al.  Recent structural insight into mitochondria gained by microscopy. , 2000, Micron.

[91]  C. Sundby,et al.  A model for the topology of the chloroplast thylakoid membrane , 1999 .

[92]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[93]  Robert Wechsler-Reya,et al.  BIN1 is a novel MYC–interacting protein with features of a tumour suppressor , 1996, Nature Genetics.

[94]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[95]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[96]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[97]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[98]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[99]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[100]  G. Palade,et al.  AN ELECTRON MICROSCOPE STUDY OF THE MITOCHONDRIAL STRUCTURE , 1953, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[101]  F. S. Sjostrand Electron Microscopy of Mitochondria and Cytoplasmic Double Membranes: Systems of Double Membranes in the Cytoplasm of Certain Tissue Cell , 1953, Nature.