Left-Right Asymmetry Is Required for the Habenulae to Respond to Both Visual and Olfactory Stimuli

[1]  E. Yaksi,et al.  Spontaneous Activity Governs Olfactory Representations in Spatially Organized Habenular Microcircuits , 2014, Current Biology.

[2]  E. Frasnelli Brain and behavioral lateralization in invertebrates , 2013, Front. Psychol..

[3]  K. Kawakami,et al.  Interhemispheric asymmetry of olfactory input-dependent neuronal specification in the adult brain , 2013, Nature Neuroscience.

[4]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[5]  M. Halpern,et al.  Aversive cues fail to activate fos expression in the asymmetric olfactory-habenula pathway of zebrafish , 2013, Front. Neural Circuits.

[6]  Stephen W. Wilson,et al.  Encoding asymmetry within neural circuits , 2012, Nature Reviews Neuroscience.

[7]  H. Okamoto,et al.  Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxiety , 2012, Developmental neurobiology.

[8]  P. Riederer,et al.  The significance of neuronal lateralisation in Parkinson’s disease , 2012, Journal of Neural Transmission.

[9]  Emily J. Bain,et al.  Light and melatonin schedule neuronal differentiation in the habenular nuclei. , 2011, Developmental biology.

[10]  S. Higashijima,et al.  The habenula is crucial for experience-dependent modification of fear responses in zebrafish , 2010, Nature Neuroscience.

[11]  Microdissection of zebrafish embryonic eye tissues. , 2010, Journal of visualized experiments : JoVE.

[12]  M. Hirata,et al.  Neuroimaging study on brain asymmetries in situs inversus totalis , 2010, Journal of the Neurological Sciences.

[13]  Stephen W. Wilson,et al.  Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei , 2009, Development.

[14]  Hitoshi Okamoto,et al.  From the olfactory bulb to higher brain centers: Genetic visualization of secondary olfactory pathways in zebrafish , 2009, Neuroscience Research.

[15]  Lawrence Lum,et al.  Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer , 2008, Nature chemical biology.

[16]  D. Centonze,et al.  Abnormal brain lateralization and connectivity in Schizophrenia , 2009, Reviews in the neurosciences.

[17]  Stephen W. Wilson,et al.  The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  Stephen W. Wilson,et al.  Brain asymmetry is encoded at the level of axon terminal morphology , 2008, Neural Development.

[19]  Stephen W. Wilson,et al.  Wnt/Axin1/β-Catenin Signaling Regulates Asymmetric Nodal Activation, Elaboration, and Concordance of CNS Asymmetries , 2007, Neuron.

[20]  M. Hendricks,et al.  Asymmetric innervation of the habenula in zebrafish , 2007, The Journal of comparative neurology.

[21]  T. Becker,et al.  Segregation of telencephalic and eye-field identities inside the zebrafish forebrain territory is controlled by Rx3 , 2006, Development.

[22]  Y. Kuan,et al.  Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target , 2005, Development.

[23]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[24]  Stephen W. Wilson,et al.  Laterotopic Representation of Left-Right Information onto the Dorso-Ventral Axis of a Zebrafish Midbrain Target Nucleus , 2005, Current Biology.

[25]  Stephen W. Wilson,et al.  Local Tissue Interactions across the Dorsal Midline of the Forebrain Establish CNS Laterality , 2003, Neuron.

[26]  M. Halpern,et al.  The parapineal mediates left-right asymmetry in the zebrafish diencephalon , 2003, Development.

[27]  A. Toga,et al.  Mapping brain asymmetry , 2003, Nature Reviews Neuroscience.

[28]  C. Nüsslein-Volhard,et al.  Migration and Function of a Glial Subtype in the Vertebrate Peripheral Nervous System , 2002, Neuron.

[29]  Stephen W. Wilson,et al.  Asymmetry in the epithalamus of vertebrates , 2001, Journal of anatomy.

[30]  Stephen W. Wilson,et al.  A Nodal Signaling Pathway Regulates the Laterality of Neuroanatomical Asymmetries in the Zebrafish Forebrain , 2000, Neuron.

[31]  K M O'Craven,et al.  Structural and functional brain asymmetries in human situs inversus totalis , 1999, Neurology.

[32]  Stephen L. Johnson,et al.  nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. , 1999, Development.

[33]  Á. Miklósi,et al.  Behavioural Lateralisation of the Tetrapod Type in the Zebrafish (Brachydanio Rerio) , 1997, Physiology & Behavior.

[34]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .