Advances in Thermoelectric Energy Conversion Nanocomposites

The painstaking exploring for alternative energy resources is at the research leading edge because energy plays an irreplacable role in the whole world. As a result, how to achieve high-efficient energy conversion rate has become more and more crucial under the condition of limited resources. Thermoelectric (TE) nanocomposite materials, which can generate electricity from heat, could be an alternative solution for global sustainable energy. Whether the power generation by TE nanocomposite materials could be employed as a reliable substitution for getting limited energy resources or not is contingent upon the fact that synthesized TE nanomaterials possess higher thermoelectric conversion efficiency than traditional bulk materials. The inherent characteristics of the promising TE materials like potential high efficiencies and environmentally clean from the use of geothermal and solar heat made the substitution a reality (Weidenkaff et al., 2008). Moreover, as of the rapid development of the modern fabrication and characterization techniques, especially the emerging of nanoscale composite materials, a brand-new period of manufacturing nanocomposites is approaching. The enormous needs for sustainable energy combined with recent advances in thermoelectrics inspire an increasing excitement as always. Through several decades’ endeavors of the researchers, TE nanocomposites have been applied widely to an advanced level. Practical applications have been found such as renewable energies (Robert et al., 2007), electrical power generation, such as thermoelectric generators providing power in remote terrestrial and extraterrestrial like deep space exploration (Snyder & Toberer, 2008), air-warming systems (Cosnier et al., 2008), cooling systems (Lineykin & Sam, 2007) like solid-state Peltier coolers with precise thermoelectric effects for optoelectronics and passengers’ seat in aotomobiles, and like thermoelectric micro-coolers with high cooling power density, short response time and device scalability which are very suitable for high-power and compacted microelectronic devices (Liao & She, 2007) and self-powering sensors (biomedicine, environmental monitoring, gas sensing, radio frequency field detector, infrared rays detector such as SrSi2 (Hashimoto et al., 2007) and mobile phones in the future (Dragoman & Dragoman. 2007)). High efficient utilization of waste heat energy from the surrouding environment is attributed to TE technology application. Considerable quantity of power is generated by heat energy with typical efficiencies in the range from 30% to 40% efficiency. At such rates,

[1]  S. Lineykin,et al.  User-friendly and intuitive graphical approach to the design of thermoelectric cooling systems , 2007 .

[2]  Qingjie Zhang,et al.  Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure , 2008 .

[3]  Xinbing Zhao,et al.  Preparation and Thermoelectric Properties of , 2009 .

[4]  E. Bauer,et al.  Thermoelectric performance of mischmetal skutterudites MmyFe4−xCoxSb12 at elevated temperatures , 2010 .

[5]  N. Nong,et al.  Improvement on the high temperature thermoelectric performance of Ga-doped misfit-layered Ca3Co4−xGaxO9+δ (x = 0, 0.05, 0.1, and 0.2) , 2010 .

[6]  Jing Shi,et al.  Enhanced thermoelectric performance of (Sb 0.75 Bi 0.25 ) 2 Te 3 compound from first-principles calculations , 2010 .

[7]  M. Arora,et al.  Electrochemically deposited bismuth telluride thin films , 2003 .

[8]  Min Zhou,et al.  High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering , 2006 .

[9]  D. P. Padiyan,et al.  Enhanced electrical response in Sb2S3 thin films by the inclusion of polyaniline during electrodeposition , 2010 .

[10]  M. Dresselhaus,et al.  Structure study of bulk nanograined thermoelectric bismuth antimony telluride. , 2009, Nano letters.

[11]  N. Pryds,et al.  The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate , 2010, Materials.

[12]  S. Yamanaka,et al.  Systematic investigation of the thermoelectric properties of TlMTe2 (M=Ga, In, or Tl) , 2008 .

[13]  Synthesis and thermoelectric properties of type-I clathrate Ge30P16Te8 , 2006 .

[14]  Han Li,et al.  High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase , 2009 .

[15]  Takeshi Kajihara,et al.  High thermoelectric performance at low temperature of p-Bi1.8Sb0.2Te3.0 grown by the gradient freeze method from Te-rich melt , 2004 .

[16]  T. Lippert,et al.  Development of thermoelectric oxides for renewable energy conversion technologies , 2008 .

[17]  P. Ying,et al.  Thermoelectric properties in nanostructured homologous series alloys GamSbnTe1.5(m+n) , 2009 .

[18]  Terry M. Tritt,et al.  Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View , 2006 .

[19]  Koichi Eguchi,et al.  High‐temperature thermoelectric properties of (Zn1−xAlx)O , 1996 .

[20]  Xiao-jun Wang,et al.  A new type of thermoelectric material, EuZn2Sb2. , 2008, The Journal of chemical physics.

[21]  Z. Dashevsky,et al.  The search for mechanically stable PbTe based thermoelectric materials , 2008 .

[22]  G. J. Snyder,et al.  Zintl phases for thermoelectric devices. , 2007, Dalton transactions.

[23]  M. Shikano,et al.  Thermoelectric properties of highly grain-aligned and densified Co-based oxide ceramics , 2003 .

[24]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[25]  Z. Gu,et al.  Preparation of Cadmium Sulfide Nanowire Arrays in Anodic Aluminum Oxide Templates , 1999 .

[26]  Chenguo Hu,et al.  Room-temperature synthesis and seebeck effect of lead chalcogenide nanocubes , 2010 .

[27]  A. Litvinchuk,et al.  Optical and electronic properties of metal doped thermoelectric Zn4Sb3 , 2008 .

[28]  Gang Zhang,et al.  Large thermoelectric figure of merit in Si1−xGex nanowires , 2010 .

[29]  C. Uher,et al.  Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites , 2008 .

[30]  Fen Zhang,et al.  Controlled Synthesis of Semiconducting Metal Sulfide Nanowires , 2009 .

[31]  Terry M. Tritt,et al.  Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C , 2006 .

[32]  Jihui Yang,et al.  Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering , 2004 .

[33]  K. Nose,et al.  Semiconducting properties of zinc-doped cubic boron nitride thin films , 2007 .

[34]  Yu Zhou,et al.  Polyaniline nanofibers fabricated by electrochemical polymerization: A mechanistic study , 2007 .

[35]  D. Cadavid,et al.  Thermoelectric properties of polycrystalline Zn4Sb3 samples prepared by solid state reaction method , 2008 .

[36]  Prediction of room-temperature high-thermoelectric performance in n-type La(Ru1−xRhx)4Sb12 , 1999, cond-mat/9904307.

[37]  I-Wei Chen,et al.  A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S,Se) , 2009 .

[38]  Terry M. Tritt,et al.  Properties of Nanostructured One-Dimensional and Composite Thermoelectric Materials , 2006 .

[39]  Bin Wang,et al.  In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors , 2009 .

[40]  Mats Nygren,et al.  Influence of sample compaction on the thermoelectric performance of Zn4Sb3 , 2006 .

[41]  J. Tu,et al.  Improved thermoelectric figure of merit in n-type CoSb3 based nanocomposites , 2007 .

[42]  Jian-Sheng Wang,et al.  Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons , 2009 .

[43]  L. Zhuang,et al.  Interconversion of polarons and bipolarons of polyaniline during the electrochemical polymerization of aniline , 1998 .

[44]  Joshua Martin,et al.  Optimization of the thermoelectric properties of Ba8Ga16Ge30 , 2008 .

[45]  Eunseog Cho,et al.  Thermoelectricity and localized f-band control by dp-hybridization on the Ce1−xCuxSe2 compounds , 2010 .

[46]  M. Oh,et al.  Crystal structure and thermoelectric properties of the type-I clathrate compound Ba8Ge43 with an ordered arrangement of Ge vacancies , 2006 .

[47]  Synthesis and thermoelectric properties of p-type Ba8Ga16ZnxGe30−x type-I clathrates , 2007 .

[48]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[49]  A. Weidenkaff,et al.  High-temperature thermoelectric properties of Sr2RuYO6 and Sr2RuErO6 double perovskites influenced by structure and microstructure , 2009 .

[50]  T. Kotaka,et al.  Structure and properties of polyaniline films prepared via electrochemical polymerization. I: Effect of pH in electrochemical polymerization media on the primary structure and acid dissociation constant of product polyaniline films , 1998 .

[51]  F. Yin,et al.  Thermoelectricity for crystallographic anisotropy controlled Bi-Te based alloys and p-n modules , 2006 .

[52]  Sung‐Jin Kim,et al.  Thermoelectric properties and anisotropic electronic band structure on the In4Se3−x compounds , 2009 .

[53]  S. Cronin,et al.  Models for low-dimensional thermoelectricity , 1998 .

[54]  G. Stucky,et al.  Thermal conductivity of thermoelectric clathrates , 2004 .

[55]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[56]  Timothy P. Hogan,et al.  CsBi4Te6: A High‐Performance Thermoelectric Material for Low‐Temperature Applications. , 2000 .

[57]  D. Banerjee,et al.  Synthesis and characterization of an electro-deposited polyaniline-bismuth telluride nanocomposite - A novel thermoelectric material , 2009 .

[58]  Mircea Dragoman,et al.  Giant thermoelectric effect in graphene , 2007 .

[59]  L. D. Chen,et al.  Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12 , 2006 .

[60]  T. Nishimura,et al.  High temperature thermoelectric properties of a homologous series of n-type boron icosahedra compounds: A possible counterpart to p-type boron carbide , 2007 .

[61]  S. Kaneko,et al.  Pulse-current sintering and thermoelectric properties of gas-atomized silicon–germanium powders , 2004 .

[62]  G. Meisner,et al.  Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds , 2004 .

[63]  Hohyun Lee,et al.  Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy , 2008 .

[64]  Q. Shen,et al.  Nanostructuring and thermoelectric properties of bulk N-type Mg2Si , 2009 .

[65]  Halina Rubinsztein-Dunlop,et al.  Lead sulfide nanocrystal: conducting polymer solar cells , 2004, SPIE Micro + Nano Materials, Devices, and Applications.

[66]  H. Inui,et al.  Mechanical and thermal properties of single crystals of the type-I clathrate compounds Ba8Ga16Ge30 and Sr8Ga16Ge30 , 2008 .

[67]  Xiao-jun Wang,et al.  Thermoelectric properties and electronic structure of Zintl compound BaZn2Sb2 , 2007 .

[68]  K. Goodson,et al.  Thermal characterization of Bi2Te3/Sb2Te3 superlattices , 2001 .

[69]  T. Motohashi,et al.  Fabrication and thermoelectric characteristics of [(Bi,Pb)2Ba2O4±w]0.5CoO2 bulks with highly aligned grain structure , 2008 .

[70]  R. Cava,et al.  Ln3Au3Sb4: Thermoelectrics with low thermal conductivity , 1999 .

[71]  O. Løvvik,et al.  New filled P-based skutterudites—promising materials for thermoelectricity? , 2008 .

[72]  George S. Nolas,et al.  Recent Developments in Bulk Thermoelectric Materials , 2006 .

[73]  X. Zhao,et al.  Thermoelectric Properties of Zintl Compound YbZn2Sb2 with Mn Substitution in Anionic Framework , 2009 .

[74]  Takaaki Koga,et al.  Low-dimensional thermoelectric materials , 1999, Flexible Thermoelectric Polymers and Systems.

[75]  T. Tritt,et al.  Investigation of the thermal conductivity of the mixed pentatellurides Hf1−xZrxTe5 , 2000 .

[76]  Y. Gan,et al.  Thermoelectric property of PbTe coating on copper and nickel , 2009 .

[77]  Gang Chen,et al.  Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. , 2008, Nano letters.

[78]  Xinbing Zhao,et al.  Improved thermoelectric performance in the Zintl phase compounds YbZn2−xMnxSb2 via isoelectronic substitution in the anionic framework , 2008 .

[79]  Robert Plana,et al.  Modeling of rf energy sensing and harvesting using the giant thermoelectric effect in carbon nanotubes , 2007 .

[80]  Li Wang,et al.  The effect of Mg substitution for Ti on transport and thermoelectric properties of TiS2 , 2007 .

[81]  O. Yamashita Effect of metal electrode on Seebeck coefficient of p- and n-type Si thermoelectrics , 2004 .

[82]  Joshua Martin,et al.  Thermal conductivity of YbB44Si2 , 2007 .

[83]  K. Terao,et al.  Boron isotope effects on the thermoelectric properties of UB4 at low temperatures , 2001 .

[84]  Jingfeng Li,et al.  Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering , 2007 .

[85]  Kefeng Cai,et al.  In situ fabrication and thermoelectric properties of PbTe–polyaniline composite nanostructures , 2011 .

[86]  S. Yamanaka,et al.  Thermoelectric properties of Tl–X–Te (X=Ge, Sn, and Pb) compounds with low lattice thermal conductivity , 2006 .

[87]  A. Majumdar,et al.  Thermal conductivity reduction in oxygen-deficient strontium titanates , 2008 .

[88]  S. W. Kim,et al.  Enhancement of high temperature thermoelectric properties of intermetallic compounds based on a Skutterudite IrSb3 and a half-Heusler TiNiSb , 2004 .

[89]  Ctirad Uher,et al.  Influence of fullerene dispersion on high temperature thermoelectric properties of BayCo4Sb12-based composites , 2007 .

[90]  A. Yamamoto,et al.  Thermoelectric properties and figure of merit of a Te-doped InSb bulk single crystal , 2005 .

[91]  M. Shikano,et al.  Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit , 2002 .

[92]  R. Wolfe,et al.  Thermoelectric properties of FeSi , 1965 .

[93]  K. Kishida,et al.  Crystal structure and thermoelectric properties of type-I clathrate compounds in the Ba-Ga-Ge system , 2006 .

[94]  B. Gu,et al.  Intrinsic anisotropy of thermal conductance in graphene nanoribbons , 2009, 0910.3267.

[95]  Y. Kimura,et al.  Thermoelectric properties of directionally solidified half-Heusler compound NbCoSn alloys , 2008 .

[96]  Xinbing Zhao,et al.  High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials , 2008 .

[97]  B. Sales,et al.  Thermoelectric properties of thallium-filled skutterudites , 2000 .

[98]  Fuqiang Huang,et al.  Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1−xInxSe4 , 2009 .

[99]  S. Yamanaka,et al.  Unexpectedly low thermal conductivity in natural nanostructured bulk Ga2Te3 , 2008 .

[100]  S. Poon,et al.  (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700°C) p-type thermoelectric materials , 2008 .

[101]  王小军 Synthesis and high thermoelectric efficiency of Zintl phase YbCd2-xZnxSb2 , 2009 .

[102]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[103]  A. Weidenkaff,et al.  High-temperature thermoelectric properties of Ln(Co, Ni)O3 (Ln = La, Pr, Nd, Sm, Gd and Dy) compounds , 2007 .

[104]  B. Pedersen,et al.  Thermally stable thermoelectric Zn4Sb3 by zone-melting synthesis , 2008 .

[105]  Thermoelectric properties of BaSi2, SrSi2, and LaSi , 2007 .

[106]  A. Maignan,et al.  Enhancement of the thermoelectric performances of In2O3 by the coupled substitution of M2+/Sn4+ for In3+ , 2008 .

[107]  Lingai Luo,et al.  An experimental and numerical study of a thermoelectric air-cooling and air-heating system , 2008 .

[108]  B. Zhang,et al.  Thermoelectric Properties of Half-Heusler Bismuthides ZrCo1−xNixBi (x = 0.0 to 0.1) , 2007 .

[109]  George S. Nolas,et al.  High figure of merit in partially filled ytterbium skutterudite materials , 2000 .

[110]  L. C. Moreno,et al.  Thermoelectric power factor of LSCoO compounds , 2008, Microelectron. J..

[111]  Jeunghee Park,et al.  Size-dependent thermal conductivity of individual single-crystalline PbTe nanowires , 2010 .

[112]  K. Kishida,et al.  Thermoelectric properties and crystal structure of type-III clathrate compounds in the Ba–Al–Ge system , 2007 .

[113]  Osamu Yamashita,et al.  High performance n-type bismuth telluride with highly stable thermoelectric figure of merit , 2004 .

[114]  Ulrich Burkhardt,et al.  Synthesis and high thermoelectric efficiency of Zintl phase YbCd2−xZnxSb2 , 2009 .

[115]  M. Kanatzidis,et al.  Electronic structure of rare-earth nickel pnictides: Narrow-gap thermoelectric materials , 1999 .

[116]  C. Liao,et al.  Preparation of bismuth telluride thin films through interfacial reaction , 2007 .

[117]  D. Tan,et al.  Mechanical and Thermal Properties , 2010 .

[118]  Han Li,et al.  Rapid preparation method of bulk nanostructured Yb0.3Co4Sb12+y compounds and their improved thermoelectric performance , 2008 .

[119]  Natalio Mingo,et al.  Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires , 2004 .

[120]  Yasunori Tanaka,et al.  Thermoelectric properties of oxide ceramics , 1996 .

[121]  Yu-Ming Lin,et al.  Anomalously high thermoelectric figure of merit in Bi1−xSbx nanowires by carrier pocket alignment , 2001 .

[122]  B. Lenoir,et al.  Beneficial influence of Ru on the thermoelectric properties of Mo3Sb7 , 2009 .

[123]  Osamu Yamashita,et al.  Bismuth telluride compounds with high thermoelectric figures of merit , 2003 .

[124]  W. Xiao,et al.  Preparation and thermoelectric properties of SiO2/β-Zn4Sb3 nanocomposite materials , 2009 .

[125]  Peijie Sun,et al.  Narrow band gap and enhanced thermoelectricity in FeSb2. , 2010, Dalton transactions.

[126]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.