Fast Uzawa algorithms for solving non-symmetric stabilized saddle point problems
暂无分享,去创建一个
[1] David J. Silvester. Optimal low order finite element methods for incompressible flow , 1994 .
[2] A. Wathen,et al. Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .
[3] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[4] Joseph E. Pasciak,et al. Uzawa type algorithms for nonsymmetric saddle point problems , 2000, Math. Comput..
[5] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[6] Howard C. Elman,et al. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..
[7] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[8] Andrew J. Wathen,et al. Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .
[9] O. Axelsson. Iterative solution methods , 1995 .
[10] David J. Silvester,et al. Stabilised bilinear—constant velocity—pressure finite elements for the conjugate gradient solution of the Stokes problem , 1990 .
[11] Max Gunzburger,et al. Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .
[12] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[13] B. V. Dean,et al. Studies in Linear and Non-Linear Programming. , 1959 .