The Topological Asymptotic for PDE Systems: The Elasticity Case

The aim of the topological sensitivity analysis is to obtain an asymptotic expansion of a design functional with respect to the creation of a small hole. In this paper, such an expansion is obtained and analyzed in the context of linear elasticity for general functionals and arbitrary shaped holes by using an adaptation of the adjoint method and a domain truncation technique. The method is general and can be easily adapted to other linear PDEs and other types of boundary conditions.

[1]  Robert V. Kohn,et al.  Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials , 1993 .

[2]  Jean Michel,et al.  Quelques resultats sur l'identification de domaines , 1973 .

[3]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[4]  E. Sternberg,et al.  Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity , 1980 .

[5]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[6]  J. Cea Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût , 1986 .

[7]  Avner Friedman,et al.  Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence , 1989 .

[8]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[9]  Niels Olhoff,et al.  Generalized shape optimization of three-dimensional structures using materials with optimum microstructures , 1998 .

[10]  Michael Vogelius,et al.  Identification of conductivity imperfections of small diameter by boundary measurements. Continuous , 1998 .

[11]  Marc Schoenauer,et al.  Mechanical inclusions identification by evolutionary computation , 1996 .

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  F. Murat,et al.  Sur le controle par un domaine géométrique , 1976 .

[14]  J. Cea,et al.  The shape and topological optimizations connection , 2000 .

[15]  Mohamed Masmoudi,et al.  Computation of high order derivatives in optimal shape design , 1994 .

[16]  Philippe Guillaume,et al.  The Topological Sensitivity For Linear Isotropic Elasticity , 1999 .

[17]  T. Lewiński,et al.  Topological Derivative for Nucleation of Non-Circular Voids , 1999 .