Identification of Regeneration Times in MCMC Simulation, With Application to Adaptive Schemes

Regeneration is a useful tool in Markov chain Monte Carlo simulation because it can be used to side-step the burn-in problem and to construct better estimates of the variance of parameter estimates themselves. It also provides a simple way to introduce adaptive behavior into a Markov chain, and to use parallel processors to build a single chain. Regeneration is often difficult to take advantage of because, for most chains, no recurrent proper atom exists, and it is not always easy to use Nummelin's splitting method to identify regeneration times. This article describes a constructive method for generating a Markov chain with a specified target distribution and identifying regeneration times. As a special case of the method, an algorithm which can be “wrapped” around an existing Markov transition kernel is given. In addition, a specific rule for adapting the transition kernel at regeneration times is introduced, which gradually replaces the original transition kernel with an independence-sampling Metropolis-Hastings kernel using a mixture normal approximation to the target density as its proposal density. Computational gains for the regenerative adaptive algorithm are demonstrated in examples.

[1]  M. Kac On the notion of recurrence in discrete stochastic processes , 1947 .

[2]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[3]  D. Vere-Jones Markov Chains , 1972, Nature.

[4]  Michael A. Crane,et al.  Simulating Stable Stochastic Systems, I: General Multiserver Queues , 1974, JACM.

[5]  Michael A. Crane,et al.  Simulating Stable Stochastic Systems, II: Markov Chains , 1974, JACM.

[6]  E. Nummelin,et al.  A splitting technique for Harris recurrent Markov chains , 1978 .

[7]  H. Exton An Introduction to the Regenerative Method for Simulation Analysis , 1979 .

[8]  E. Nummelin General irreducible Markov chains and non-negative operators: Notes and comments , 1984 .

[9]  E. Nummelin General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .

[10]  J. Witmer,et al.  Nonlinear Regression Modeling. , 1984 .

[11]  D. Titterington Recursive Parameter Estimation Using Incomplete Data , 1984 .

[12]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[13]  Donald L. Iglehart,et al.  Simulation Output Analysis Using Standardized Time Series , 1990, Math. Oper. Res..

[14]  Bradley P. Carlin,et al.  An iterative Monte Carlo method for nonconjugate Bayesian analysis , 1991 .

[15]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[16]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[17]  Walter R. Gilks,et al.  Adaptive Direction Sampling , 1994 .

[18]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[19]  A. Gelfand,et al.  On Markov Chain Monte Carlo Acceleration , 1994 .

[20]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[21]  Bin Yu,et al.  Regeneration in Markov chain samplers , 1995 .

[22]  Sylvia Richardson,et al.  Markov chain concepts related to sampling algorithms , 1995 .

[23]  C. Robert Convergence Control Methods for Markov Chain Monte Carlo Algorithms , 1995 .

[24]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[25]  David Goldsman,et al.  Large-Sample Results for Batch Means , 1997 .

[26]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[27]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[28]  Geoff K. Nicholls,et al.  Perfect simulation for sample-based inference , 1999 .

[29]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[30]  Galin L. Jones,et al.  Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .

[31]  G. Warnes The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .

[32]  D. Chauveau,et al.  Improving Convergence of the Hastings–Metropolis Algorithm with an Adaptive Proposal , 2002 .

[33]  R. Kass,et al.  Statistical analysis of temporal evolution in single-neuron firing rates. , 2002, Biostatistics.

[34]  Galin L. Jones,et al.  On the applicability of regenerative simulation in Markov chain Monte Carlo , 2002 .

[35]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.