Identification of Regeneration Times in MCMC Simulation, With Application to Adaptive Schemes
暂无分享,去创建一个
[1] M. Kac. On the notion of recurrence in discrete stochastic processes , 1947 .
[2] L. Schmetterer. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .
[3] D. Vere-Jones. Markov Chains , 1972, Nature.
[4] Michael A. Crane,et al. Simulating Stable Stochastic Systems, I: General Multiserver Queues , 1974, JACM.
[5] Michael A. Crane,et al. Simulating Stable Stochastic Systems, II: Markov Chains , 1974, JACM.
[6] E. Nummelin,et al. A splitting technique for Harris recurrent Markov chains , 1978 .
[7] H. Exton. An Introduction to the Regenerative Method for Simulation Analysis , 1979 .
[8] E. Nummelin. General irreducible Markov chains and non-negative operators: Notes and comments , 1984 .
[9] E. Nummelin. General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .
[10] J. Witmer,et al. Nonlinear Regression Modeling. , 1984 .
[11] D. Titterington. Recursive Parameter Estimation Using Incomplete Data , 1984 .
[12] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[13] Donald L. Iglehart,et al. Simulation Output Analysis Using Standardized Time Series , 1990, Math. Oper. Res..
[14] Bradley P. Carlin,et al. An iterative Monte Carlo method for nonconjugate Bayesian analysis , 1991 .
[15] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[16] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[17] Walter R. Gilks,et al. Adaptive Direction Sampling , 1994 .
[18] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[19] A. Gelfand,et al. On Markov Chain Monte Carlo Acceleration , 1994 .
[20] C. Geyer,et al. Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .
[21] Bin Yu,et al. Regeneration in Markov chain samplers , 1995 .
[22] Sylvia Richardson,et al. Markov chain concepts related to sampling algorithms , 1995 .
[23] C. Robert. Convergence Control Methods for Markov Chain Monte Carlo Algorithms , 1995 .
[24] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[25] David Goldsman,et al. Large-Sample Results for Batch Means , 1997 .
[26] G. Roberts,et al. Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .
[27] L Tierney,et al. Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.
[28] Geoff K. Nicholls,et al. Perfect simulation for sample-based inference , 1999 .
[29] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[30] Galin L. Jones,et al. Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .
[31] G. Warnes. The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .
[32] D. Chauveau,et al. Improving Convergence of the Hastings–Metropolis Algorithm with an Adaptive Proposal , 2002 .
[33] R. Kass,et al. Statistical analysis of temporal evolution in single-neuron firing rates. , 2002, Biostatistics.
[34] Galin L. Jones,et al. On the applicability of regenerative simulation in Markov chain Monte Carlo , 2002 .
[35] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.