Coupled elastoplasticity and viscoplasticity under thermomechanical loading

This paper is a contribution to material behaviour modelling. Total strain is decomposed into elastoplastic and viscoplastic strains. Both parts are analysed separately and put together by the principle of superposition. The spring-slider model controlled by either stress or strain enables elastoplasticity modelling under constant or variable temperature with the Prandtl operators. Viscoplasticity is taken into account, if temperature exceeds creep temperature, by adding a nonlinear damper to existing spring-slider models, otherwise just elastoplasticity is considered. The material parameters result from isothermal strain-controlled low cycle fatigue (LCF) tests. Hysteresis loops are assumed to be stabilized. The high speed of computation that is characteristic of Masing and memory rules is retained. Solving of differential equations is not required. The model developed so far is uniaxial, but a multiaxial extension is possible.

[1]  Eric Charkaluk,et al.  A computational approach to thermomechanical fatigue , 2004 .

[2]  R. P. Skelton,et al.  Energy criterion for high temperature low cycle fatigue failure , 1991 .

[3]  J. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity , 1989 .

[4]  Alfred Scholz,et al.  Behaviour of heat resistant power plant steels undergoing variable long term loading conditions , 2000 .

[5]  Eric Charkaluk,et al.  Thermomechanical design in the automotive industry , 2004 .

[6]  Karl Heinz Kloos,et al.  Beschreibung des Zeitdehnverhaltens warmfester Stähle. Teil 1: Kriechgleichungen für Einzelwerkstoffe , 1993 .

[7]  Stéphane Chapuliot,et al.  A computational lifetime prediction of a thermal shock experiment. Part I: thermomechanical modelling and lifetime prediction , 2006 .

[8]  K. Dang Van,et al.  Fatigue design of structures under thermomechanical loadings , 2002 .

[9]  J. Granacher,et al.  Beschreibung des Zeitdehnverhaltens warmfester Stähle Teil 2: Kriechgleichungen für die Stahlsorten 10 CrMo 9 10 und X 20(22) CrMoV 12 1† , 1993 .

[10]  D. Nouailhas,et al.  Unified modelling of cyclic viscoplasticity: Application to austenitic stainless steels , 1989 .

[11]  J.‐L. Chaboche,et al.  An overview of the damage approach of durability modelling at elevated temperature , 2001 .

[12]  Michael Hack,et al.  An online algorithm for temperature influenced fatigue life estimation: stress–life approach , 2004 .

[13]  Huseyin Sehitoglu,et al.  Thermo-mechanical fatigue life prediction methods , 1992 .

[14]  G. A. Webster,et al.  Energy criteria and cumulative damage during fatigue crack growth , 1998 .

[15]  Erhard Krempl,et al.  Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers , 2003 .