Stability of combinatorial polynomials and its applications

Many important problems are closely related to the zeros of certain polynomials derived from combinatorial objects. The aim of this paper is to make a systematical study on the stability of polynomials in combinatorics. Applying the characterizations of Borcea and Brändén concerning linear operators preserving stability, we present criteria for real stability and Hurwitz stability of recursive polynomials. We also give a criterion for Hurwitz stability of the Turán expressions of recursive polynomials. As applications of these criteria, we derive some stability results occurred in the literature in a unified manner. In addition, we obtain the Hurwitz stability of Turán expressions for alternating runs polynomials of types A and B and solve a conjecture concerning Hurwitz stability of alternating runs polynomials defined on a dual set of Stirling permutations. Furthermore, we prove that the Hurwitz stability of any symmetric polynomial implies its semi-γ-positivity. We study a class of symmetric polynomials and derive many nice properties including Hurwitz stability, semi-γ-positivity, non γ-positivity, unimodality, strong q-log-convexity, the Jacobi continued fraction expansion and the relation with derivative polynomials. In particular, these properties of the alternating descents polynomials of types A and B can be obtained in a unified approach. Finally, based on the h-polynomials from combinatorial geometry, we use real stability to prove a criterion for zeros interlacing between a polynomial and its reciprocal polynomial, which in particular implies the alternatingly increasing property of the original polynomial. This criterion extends a result of Brändén and Solus and unifies such properties for many combinatorial polynomials, including ascent polynomials for k-ary words, descent polynomials on signed Stirling permutations and colored permutations and q-analog of descent polynomials on colored permutations, and so on. Furthermore, we also obtain a recurrence relation and zeros interlacing of q-analog of descent polynomials on colored permutations that extend some results of Brändén and Brenti. In addition, as an application of Hurwitz stability, we prove the alternatingly increasing property and zeros interlacing for two kinds of peak polynomials on the dual set of Stirling permutations. ∗Supported partially by the National Natural Science Foundation of China (Nos. 11971206, 12022105) and the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province (No. BK20200048). Email address: ding-mj@hotmail.com (M.-J. Ding), bxzhu@jsnu.edu.cn (B.-X. Zhu)

[1]  Christos A. Athanasiadis Binomial Eulerian polynomials for colored permutations , 2020, J. Comb. Theory, Ser. A.

[2]  Ira M. Gessel,et al.  Stirling Polynomials , 1978, J. Comb. Theory, Ser. A.

[3]  Michael J. Griffin,et al.  Jensen polynomials for the Riemann zeta function and other sequences , 2019, Proceedings of the National Academy of Sciences.

[4]  Francesco Brenti,et al.  q-Eulerian Polynomials Arising from Coxeter Groups , 1994, Eur. J. Comb..

[5]  M. Beck,et al.  $h^\ast $-polynomials of zonotopes , 2016, Transactions of the American Mathematical Society.

[6]  Larry X. W. Wang,et al.  Context-free grammars for triangular arrays , 2015 .

[7]  J. Borcea,et al.  The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability , 2008, 0809.0401.

[8]  Julius Borcea,et al.  Multivariate Pólya–Schur classification problems in the Weyl algebra , 2006, math/0606360.

[9]  Denis Chebikin Variations on Descents and Inversions in Permutations , 2008, Electron. J. Comb..

[10]  P. Turán,et al.  On the zeros of the polynomials of Legendre , 1950 .

[11]  Einar Steingrímsson,et al.  Permutation Statistics of Indexed Permutations , 1994, Eur. J. Comb..

[12]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[13]  Étude sur les maxima, minima et séquences des permutations , 1884 .

[14]  Philippe Flajolet,et al.  COMBINATORIAL MODELS OF CREATION{ANNIHILATION , 2010, 1010.0354.

[15]  Shi-Mei Ma,et al.  ENUMERATION OF A DUAL SET OF STIRLING PERMUTATIONS BY THEIR ALTERNATING RUNS , 2015, Bulletin of the Australian Mathematical Society.

[16]  Bao-Xuan Zhu,et al.  Stieltjes moment properties and continued fractions from combinatorial triangles , 2020, Adv. Appl. Math..

[17]  Li Liu,et al.  On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..

[18]  P. Brändén,et al.  THE LEE – YANG AND PÓLYA – SCHUR PROGRAMS , 2013 .

[19]  Bao-Xuan Zhu,et al.  Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..

[20]  Philip B. Zhang,et al.  The Real-rootedness of Eulerian Polynomials via the Hermite--Biehler Theorem , 2015, 1501.05824.

[21]  Swiatoslaw R. Gal Real Root Conjecture Fails for Five- and Higher-Dimensional Spheres , 2005, Discret. Comput. Geom..

[22]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[24]  Michael E. Hoffman Derivative polynomials for tangent and secant , 1995 .

[25]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[26]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[27]  M. Marden Geometry of Polynomials , 1970 .

[29]  P. Brändén Unimodality, log-concavity, real-rootedness and beyond , 2015 .

[30]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[31]  Yi Wang,et al.  q-Eulerian Polynomials and Polynomials with Only Real Zeros , 2006, Electron. J. Comb..

[32]  G. Szegö,et al.  On an inequality of P. Turán concerning Legendre polynomials , 1948 .

[33]  Francesco Brenti,et al.  A Class of q-Symmetric Functions Arising from Plethysm , 2000, J. Comb. Theory, Ser. A.

[34]  Bao-Xuan Zhu,et al.  Q-log-convexity from Linear Transformations and Polynomials with Only Real Zeros , 2016, Eur. J. Comb..

[35]  Ira M. Gessel,et al.  Counting Permutations by Alternating Descents , 2014, Electron. J. Comb..

[36]  Carla D. Savage,et al.  The (1/k)-Eulerian Polynomials , 2012, Electron. J. Comb..

[37]  Julius Borcea,et al.  The Lee‐Yang and Pólya‐Schur programs. II. Theory of stable polynomials and applications , 2008, 0809.3087.

[38]  Petter Brändén Sign-Graded Posets, Unimodality of W-Polynomials and the Charney-Davis Conjecture , 2004, Electron. J. Comb..

[39]  Petter Brändén,et al.  On linear transformations preserving the Polya frequency property , 2004 .

[40]  Bao-Xuan Zhu,et al.  A generalized Eulerian triangle from staircase tableaux and tree-like tableaux , 2020, J. Comb. Theory, Ser. A.

[41]  Arthur L. B. Yang,et al.  Recurrence Relations for Strongly q-Log-Convex Polynomials , 2008, Canadian Mathematical Bulletin.

[42]  Jun Ma,et al.  David-Barton type identities and alternating run polynomials , 2020, Adv. Appl. Math..

[44]  Shi-Mei Ma,et al.  Derivative polynomials and enumeration of permutations by number of interior and left peaks , 2012, Discret. Math..

[45]  Donald E. Knuth,et al.  Computation of Tangent, Euler, and Bernoulli Numbers* , 1967 .

[46]  J. Remmel Generating Functions for Alternating Descents and Alternating Major Index , 2012 .

[47]  Michael E. Hoffman Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences , 1999, Electron. J. Comb..

[48]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[49]  Q. I. Rahman,et al.  Analytic theory of polynomials , 2002 .

[50]  Sergi Elizalde Descents on quasi-Stirling permutations , 2021, J. Comb. Theory, Ser. A.

[51]  D. Wagner,et al.  Multivariate stable polynomials: theory and applications , 2009, 0911.3569.

[52]  P. Brand'en Polynomials with the half-plane property and matroid theory , 2006, math/0605678.

[53]  P. Brand'en,et al.  Lecture hall $P$-partitions , 2016, 1609.02790.

[54]  Yeong-Nan Yeh,et al.  Polynomials with real zeros and Po'lya frequency sequences , 2005, J. Comb. Theory, Ser. A.

[55]  J. Schepers,et al.  Unimodality Questions for Integrally Closed Lattice Polytopes , 2011, 1110.3724.

[56]  T. Liggett,et al.  Negative dependence and the geometry of polynomials , 2007, 0707.2340.

[57]  C. Charalambides,et al.  Review of the stirling numbers, their generalizations and Statistical Applications , 1988 .

[58]  Mirkó Visontai,et al.  Stable regions of Turán expressions , 2014, J. Approx. Theory.

[59]  Kassie Archer,et al.  Pattern restricted quasi-Stirling permutations , 2018, Australas. J Comb..

[60]  Zhicong Lin On the descent polynomial of signed multipermutations , 2013 .

[61]  June Huh,et al.  Lorentzian polynomials , 2019, Annals of Mathematics.

[62]  Yi Wang,et al.  A unified approach to polynomial sequences with only real zeros , 2005, Adv. Appl. Math..

[63]  Matthieu Josuat-Vergès Enumeration of snakes and cycle-alternating permutations , 2014, Australas. J Comb..

[64]  Carla D. Savage,et al.  Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences , 2012, J. Comb. Theory, Ser. A.

[65]  Nikhil Srivastava,et al.  Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[66]  Bao-Xuan Zhu,et al.  Positivity of Iterated Sequences of Polynomials , 2018, SIAM J. Discret. Math..

[67]  T. K. Petersen Enriched P-partitions and peak algebras , 2005, math/0508041.

[68]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[69]  J. Agapito On symmetric polynomials with only real zeros and nonnegative γ-vectors , 2014 .

[70]  David G. L. Wang,et al.  Positivity and divisibility of alternating descent polynomials , 2020, 2011.02685.

[71]  J. Stembridge Enriched p-partitions , 1997 .

[72]  Yeong-Nan Yeh,et al.  Enumeration of permutations by number of alternating descents , 2016, Discret. Math..

[73]  G. Birkhoff A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .