Universal transduction scheme for nanomechanical systems based on dielectric forces
暂无分享,去创建一个
Eva M. Weig | E. Weig | J. Kotthaus | Q. Unterreithmeier | Jörg P. Kotthaus | Quirin P. Unterreithmeier
[1] D. Rugar,et al. Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.
[2] A N Cleland,et al. Superconducting qubit storage and entanglement with nanomechanical resonators. , 2004, Physical review letters.
[3] K. Brown,et al. Passive cooling of a micromechanical oscillator with a resonant electric circuit. , 2007, Physical review letters.
[4] T. Baehr‐Jones,et al. Harnessing optical forces in integrated photonic circuits , 2008, Nature.
[5] Steven W. Shaw,et al. Tunable Microelectromechanical Filters that Exploit Parametric Resonance , 2005 .
[6] Ashwin Sampathkumar,et al. Photothermal operation of high frequency nanoelectromechanical systems , 2006 .
[7] D. Gillespie. The mathematics of Brownian motion and Johnson noise , 1996 .
[8] Theresa S. Mayer,et al. Bottom-up assembly of large-area nanowire resonator arrays. , 2008, Nature nanotechnology.
[9] Ron Lifshitz,et al. Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays , 2003 .
[10] Werner Wegscheider,et al. Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems , 2002 .
[11] M. Roukes,et al. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. , 2007, Nature nanotechnology.
[12] K. Ekinci. Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS). , 2005, Small.
[13] M. Blencowe. Nanoelectromechanical systems , 2005, cond-mat/0502566.
[14] M. R. Freeman,et al. Multifunctional Nanomechanical Systems via Tunably Coupled Piezoelectric Actuation , 2007, Science.
[15] I. Mahboob,et al. Bit storage and bit flip operations in an electromechanical oscillator. , 2008, Nature nanotechnology.
[16] Scott S. Verbridge,et al. High quality factor resonance at room temperature with nanostrings under high tensile stress , 2006 .
[17] A. Cleland,et al. Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.
[18] M. Gad-el-Hak. The MEMS Handbook , 2001 .
[19] A. Ashkin,et al. Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[20] J. Teufel,et al. Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.
[21] Kimberly L. Turner,et al. Tuning the dynamic behavior of parametric resonance in a micromechanical oscillator , 2003 .
[22] M. Roukes. Nanoelectromechanical Systems , 2000, cond-mat/0008187.
[23] K. Jensen,et al. An atomic-resolution nanomechanical mass sensor. , 2008, Nature Nanotechnology.
[24] M. Roukes,et al. Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators , 2007 .
[25] Xianfan Xu,et al. Ultrasensitive mass sensing using mode localization in coupled microcantilevers , 2006 .
[26] Thomas B. Jones,et al. Electromechanics of Particles , 1995 .
[27] B. Camarota,et al. Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.
[28] Jeevak M. Parpia,et al. Nanomechanical resonant structures in silicon nitride: fabrication, operation and dissipation issues , 2002 .
[29] Nanomechanical displacement detection using fiber-optic interferometry , 2007 .