A nonlinear heat equation with singular initial data

[1]  A. Friedman,et al.  Blow-up of positive solutions of semilinear heat equations , 1985 .

[2]  H. Brezis Remarks on the preceding paper by M. Ben-Artzi “Global solutions of two-dimensional Navier-Stokes and Euler equations” , 1994 .

[3]  P Baras,et al.  Complete blow-up after Tmax for the solution of a semilinear heat equation , 1987 .

[4]  M. Ben-Artzi Global solutions of two-dimensional Navier-Stokes and euler equations , 1994 .

[5]  F. Weissler Semilinear evolution equations in Banach spaces , 1979 .

[6]  F. Weissler Existence and non-existence of global solutions for a semilinear heat equation , 1981 .

[7]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[8]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[9]  W. Ni,et al.  Singular behavior in nonlinear parabolic equations , 1985 .

[10]  P. Baras Non-unicité des solutions d'une équation d'évolution non linéaire , 1983 .

[11]  Haim Brezis,et al.  Blow up for $u_t-\Delta u=g(u)$ revisited , 1996, Advances in Differential Equations.

[12]  Hiroshi Fujita,et al.  On the nonstationary Navier-Stokes system , 1962 .

[13]  M. Pierre,et al.  Critère d'existence de solutions positives pour des équations semi-linéaires non monotones , 1985 .

[14]  Daniel W. Stroock,et al.  A New Proof of Moser's Parabolic Harnack Inequality via the Old Ideas of Nash , 2022 .