Visual cognition in social insects.

Visual learning admits different levels of complexity, from the formation of a simple associative link between a visual stimulus and its outcome, to more sophisticated performances, such as object categorization or rules learning, that allow flexible responses beyond simple forms of learning. Not surprisingly, higher-order forms of visual learning have been studied primarily in vertebrates with larger brains, while simple visual learning has been the focus in animals with small brains such as insects. This dichotomy has recently changed as studies on visual learning in social insects have shown that these animals can master extremely sophisticated tasks. Here we review a spectrum of visual learning forms in social insects, from color and pattern learning, visual attention, and top-down image recognition, to interindividual recognition, conditional discrimination, category learning, and rule extraction. We analyze the necessity and sufficiency of simple associations to account for complex visual learning in Hymenoptera and discuss possible neural mechanisms underlying these visual performances.

[1]  K. Frisch Der Farbensinn und Formensinn der Biene , 1914 .

[2]  I. Pavlov,et al.  Lectures on conditioned reflexes , 1928 .

[3]  E. Wolf CRITICAL FREQUENCY OF FLICKER AS A FUNCTION OF INTENSITY OF ILLUMINATION FOR THE EYE OF THE BEE , 1933, The Journal of general physiology.

[4]  E. Wolf,et al.  THE EFFECT OF LIGHT INTENSITY, AREA, AND FLICKER FREQUENCY ON THE VISUAL REACTIONS OF THE HONEY BEE , 1935, The Journal of general physiology.

[5]  K. Spence The differential response in animals to stimuli varying within a single dimension. , 1937 .

[6]  V. Grant The Fertilization of Flowers , 1951 .

[7]  Masutaro Kuwabara Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica (Mit 1 Textabbildung) , 1957 .

[8]  R. Wehner Pattern Recognition in Bees , 1967, Nature.

[9]  Rüdiger Wehner,et al.  The generalization of directional visual stimuli in the honey bee, Apis mellifera , 1971 .

[10]  E. Wilson The Insect Societies , 1974 .

[11]  A. Anderson,et al.  The Ability of Honey Bees to Generalise Visual Stimuli , 1972 .

[12]  Bernd Heinrich,et al.  "Majoring" and "Minoring" by Foraging Bumblebees, Bombus Vagans: An Experimental Analysis , 1979 .

[13]  R. Wehner Spatial Vision in Arthropods , 1981 .

[14]  J. Núñez,et al.  Honeybee Foraging Strategies at a Food Source in Relation to its Distance from the Hive and the Rate of Sugar Flow , 1982 .

[15]  M. Bitterman,et al.  Classical conditioning of proboscis extension in honeybees (Apis mellifera). , 1983, Journal of comparative psychology.

[16]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[17]  R. Menzel,et al.  Spectral sensitivity of photoreceptors and colour vision in the solitary bee, Osmia Rufa , 1988 .

[18]  S. Harnad Categorical Perception: The Groundwork of Cognition , 1990 .

[19]  M. Hammer An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees , 1993, Nature.

[20]  M. Hammer,et al.  Functional Organization of Appetitive Learning and Memory in a Generalist Pollinator, the Honey Bee , 1993 .

[21]  S. W. Zhang,et al.  Prior experience enhances pattern discrimination in insect vision , 1994, Nature.

[22]  Herbert S. Terrace,et al.  Memory and Representation of Serial Order by Children, Monkeys, and Pigeons , 1994 .

[23]  M. Srinivasan Pattern recognition in the honeybee: Recent progress , 1994 .

[24]  Lars Chittka,et al.  Can honey bees count landmarks? , 1995, Animal Behaviour.

[25]  Zeil,et al.  Structure and function of learning flights in ground-nesting bees and wasps , 1996, The Journal of experimental biology.

[26]  R. Menzel,et al.  Symmetry perception in an insect , 1996, Nature.

[27]  J. Zeil,et al.  Structure and function of learning flights in bees and wasps , 1996 .

[28]  M. Srinivasan,et al.  Maze Learning by Honeybees , 1996, Neurobiology of Learning and Memory.

[29]  M. Lehrer,et al.  Honeybees’ visual spatial orientation at the feeding site , 1997 .

[30]  Randolf Menzel,et al.  Insect visual perception: complex abilities of simple nervous systems , 1997, Current Opinion in Neurobiology.

[31]  T. Maddess,et al.  Orientation-sensitive Neurons in the Brain of the Honey Bee (Apis mellifera). , 1997, Journal of insect physiology.

[32]  M Heisenberg,et al.  Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. , 1998, Learning & memory.

[33]  S. W. Zhang,et al.  Honeybees link sights to smells , 1998, Nature.

[34]  M. Hammer,et al.  Pattern learning by honeybees: conditioning procedure and recognition strategy , 1999, Animal Behaviour.

[35]  L. Chittka,et al.  Flower Constancy, Insect Psychology, and Plant Evolution , 1999, Naturwissenschaften.

[36]  R. Menzel Memory dynamics in the honeybee , 1999, Journal of Comparative Physiology A.

[37]  Mandyam V. Srinivasan,et al.  Motion detection in insect orientation and navigation , 1999, Vision Research.

[38]  Martin Fieder,et al.  Categorical learning in pigeons: the role of texture and shape in complex static stimuli , 1999, Vision Research.

[39]  M. V. Srinivasan,et al.  Honeybee Memory: Navigation by Associative Grouping and Recall of Visual Stimuli , 1999, Neurobiology of Learning and Memory.

[40]  A Horridge Seven experiments on pattern vision of the honeybee, with a model , 2000, Vision Research.

[41]  Thomas S Collett,et al.  The binding of visual patterns in bumblebees , 2000, Current Biology.

[42]  J. Tautz,et al.  Visual constraints in foraging bumblebees: Flower size and color affect search time and flight behavior , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A Guo,et al.  Choice Behavior of Drosophila Facing Contradictory Visual Cues , 2001, Science.

[44]  N. Cowan The magical number 4 in short-term memory: A reconsideration of mental storage capacity , 2001, Behavioral and Brain Sciences.

[45]  M. Srinivasan,et al.  The concepts of ‘sameness’ and ‘difference’ in an insect , 2001, Nature.

[46]  S. Ian Robertson,et al.  Problem-solving , 2001, Human Thinking.

[47]  M. Lehrer,et al.  Cognitive Ecology of Pollination: Honeybee vision and floral displays:from detection to close-up recognition , 2001 .

[48]  E. Tibbetts Visual signals of individual identity in the wasp Polistes fuscatus , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[49]  Thomas S. Collett,et al.  Memory use in insect visual navigation , 2002, Nature Reviews Neuroscience.

[50]  Thomas S Collett,et al.  Learning speed and contextual isolation in bumblebees. , 2002, The Journal of experimental biology.

[51]  T. Zentall,et al.  Categorization, concept learning, and behavior analysis: an introduction. , 2002, Journal of the experimental analysis of behavior.

[52]  M. Lehrer,et al.  Discrimination of closed shapes by two species of bee, Apis mellifera and Megachile rotundata. , 2002, The Journal of experimental biology.

[53]  H. Lachnit,et al.  Nonelemental visual learning in honeybees , 2002, Animal Behaviour.

[54]  Paul Graham,et al.  View-based navigation in insects: how wood ants (Formica rufa L.) look at and are guided by extended landmarks. , 2002, The Journal of experimental biology.

[55]  W. Gronenberg,et al.  Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera) , 2002, The Journal of comparative neurology.

[56]  G. Miller The cognitive revolution: a historical perspective , 2003, Trends in Cognitive Sciences.

[57]  Ralph J Greenspan,et al.  Salience modulates 20–30 Hz brain activity in Drosophila , 2003, Nature Neuroscience.

[58]  H. Lachnit,et al.  The effect of cumulative experience on the use of elemental and configural visual discrimination strategies in honeybees , 2003, Behavioural Brain Research.

[59]  G. A. Horridge,et al.  The effect of complexity on the discrimination of oriented bars by the honeybee (Apis mellifera) , 2003, Journal of Comparative Physiology A.

[60]  R. Wehner Desert ant navigation: how miniature brains solve complex tasks , 2003, Journal of Comparative Physiology A.

[61]  Paul Graham,et al.  Route learning by insects , 2003, Current Opinion in Neurobiology.

[62]  R. Menzel Das Gedächtnis der Honigbiene für Spektralfarben , 1968, Zeitschrift für vergleichende Physiologie.

[63]  J. H. van Hateren,et al.  Pattern recognition in bees: orientation discrimination , 1990, Journal of Comparative Physiology A.

[64]  Rüdiger Wehner,et al.  Dorsoventral asymmetry in the visual field of the bee,Apis mellifica , 1972, Journal of comparative physiology.

[65]  R. Menzel,et al.  Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera , 1992, Journal of Comparative Physiology A.

[66]  M. Lehrer,et al.  Shape discrimination by wasps (Paravespula germanica) at the food source: generalization among various types of contrast , 2004, Journal of Comparative Physiology A.

[67]  J. Dale,et al.  A socially enforced signal of quality in a paper wasp , 2004, Nature.

[68]  Lars Chittka,et al.  Fine colour discrimination requires differential conditioning in bumblebees , 2004, Naturwissenschaften.

[69]  M. Giurfa,et al.  A test of transitive inferences in free-flying honeybees: unsuccessful performance due to memory constraints. , 2004, Learning & memory.

[70]  R. Menzel,et al.  Das Gedächtnis der Honigbiene für Spektralfarben , 2004, Zeitschrift für vergleichende Physiologie.

[71]  Mathilde Hertz Die Organisation des optischen Feldes bei der Biene. II , 2004, Zeitschrift für vergleichende Physiologie.

[72]  Ernst Wolf,et al.  Das Verhalten der Bienen gegenüber flimmernden Feldern und bewegten Objekten , 2004, Zeitschrift für vergleichende Physiologie.

[73]  R. Menzel,et al.  Colour preferences of flower-naive honeybees , 1995, Journal of Comparative Physiology A.

[74]  Martin Giurfa,et al.  Conditioning procedure and color discrimination in the honeybee Apis mellifera , 2004, Naturwissenschaften.

[75]  Martin Giurfa,et al.  Local-feature assembling in visual pattern recognition and generalization in honeybees , 2004, Nature.

[76]  M. Hertz Die Organisation des optischen Feldes bei der Biene. I. , 2004, Zeitschrift für vergleichende Physiologie.

[77]  R. Menzel Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica) , 1967, Zeitschrift für vergleichende Physiologie.

[78]  R. Menzel,et al.  Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts , 1996, Journal of Comparative Physiology A.

[79]  Mandyam V. Srinivasan,et al.  Grouping of visual objects by honeybees , 2004, Journal of Experimental Biology.

[80]  Lars Chittka,et al.  Seeing the light: illumination as a contextual cue to color choice behavior in bumblebees. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  J. Biesmeijer,et al.  Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers , 2005, Naturwissenschaften.

[82]  C. D. L. Wynne,et al.  Deductive reasoning in pigeons , 1990, Naturwissenschaften.

[83]  Mandyam V Srinivasan,et al.  Visual working memory in decision making by honey bees. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Masami Sasaki,et al.  Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L. , 2006, Journal of Comparative Physiology A.

[85]  Paul Graham,et al.  Ant navigation: Priming of visual route memories , 2005, Nature.

[86]  J. Heinze,et al.  Individual Recognition in Ant Queens , 2005, Current Biology.

[87]  Martin Giurfa,et al.  The influence of training length on generalization of visual feature assemblies in honeybees , 2005, Behavioural Brain Research.

[88]  Lars Chittka,et al.  Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces , 2005, Journal of Experimental Biology.

[89]  K. Cheng,et al.  Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects , 2006, Animal Cognition.

[90]  L. Chittka,et al.  A new mode of information transfer in foraging bumblebees? , 2005, Current Biology.

[91]  D. Papaj,et al.  Flower choice copying in bumblebees , 2005, Biology Letters.

[92]  Adrian G Dyer,et al.  Simultaneous and successive colour discrimination in the honeybee (Apis mellifera) , 2005, Journal of Comparative Physiology A.

[93]  M. Lehrer,et al.  Generalization of convex shapes by bees: what are shapes made of? , 2005, Journal of Experimental Biology.

[94]  Martin Giurfa,et al.  Categorization of visual stimuli in the honeybee Apis mellifera , 2006, Animal Cognition.

[95]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[96]  Adrian Horridge,et al.  Visual discriminations of spokes, sectors, and circles by the honeybee (Apis mellifera). , 2006, Journal of insect physiology.

[97]  R. Menzel,et al.  Innervation pattern of suboesophageal ventral unpaired median neurones in the honeybee brain , 2007, Cell and Tissue Research.

[98]  Hideaki Takeuchi,et al.  Associative learning and discrimination of motion cues in the harnessed honeybee Apis mellifera L. , 2007, Journal of Comparative Physiology A.

[99]  Ken Cheng,et al.  Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Melophorus bagoti , 2007, Behavioral Ecology and Sociobiology.

[100]  M. Giurfa Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well , 2007, Journal of Comparative Physiology A.

[101]  L. Chittka,et al.  The dynamics of social learning in an insect model, the bumblebee (Bombus terrestris) , 2007, Behavioral Ecology and Sociobiology.

[102]  Timothée Masquelier,et al.  Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity , 2007, PLoS Comput. Biol..

[103]  Wei Zhang,et al.  Experience Improves Feature Extraction in Drosophila , 2007, The Journal of Neuroscience.

[104]  Feng Yu,et al.  Mushroom bodies modulate salience‐based selective fixation behavior in Drosophila , 2008, The European journal of neuroscience.

[105]  Adrian G Dyer,et al.  Honeybees can recognise images of complex natural scenes for use as potential landmarks , 2008, Journal of Experimental Biology.

[106]  Quoc C. Vuong,et al.  Insect Brains Use Image Interpolation Mechanisms to Recognise Rotated Objects , 2008, PloS one.

[107]  Guy Beugnon,et al.  Sensorimotor sequence learning in the ant Gigantiops destructor , 2008, Animal Behaviour.

[108]  M. Giurfa,et al.  Behavioral studies on tarsal gustation in honeybees: sucrose responsiveness and sucrose-mediated olfactory conditioning , 2008, Journal of Comparative Physiology A.

[109]  M. Srinivasan,et al.  Evidence for counting in insects , 2008, Animal Cognition.

[110]  J. Strassmann,et al.  On status badges and quality signals in the paper wasp Polistes dominulus: body size, facial colour patterns and hierarchical rank , 2008, Proceedings of the Royal Society B: Biological Sciences.

[111]  A. Horridge Generalization in visual recognition by the honeybee (Apis mellifera): a review and explanation. , 2009, Journal of insect physiology.

[112]  R. Wehner,et al.  Traveling in clutter: Navigation in the Central Australian desert ant Melophorus bagoti , 2009, Behavioural Processes.

[113]  J. Tautz,et al.  Number-Based Visual Generalisation in the Honeybee , 2009, PloS one.

[114]  K. Grossmann Belohnungsverzögerung beim Erlernen einer Farbe an einer künstlichen Futterstelle durch Honigbienen1,2 , 2010 .

[115]  M. Srinivasan Honey bees as a model for vision, perception, and cognition. , 2010, Annual review of entomology.

[116]  M. Giurfa,et al.  Configural processing enables discrimination and categorization of face-like stimuli in honeybees , 2010, Journal of Experimental Biology.

[117]  V. Aksoy,et al.  First evidence of fine colour discrimination ability in ants (Hymenoptera, Formicidae) , 2010, Journal of Experimental Biology.