Multicriteria optimized MLP for imbalanced learning

Classifier construction for data with imbalanced class frequencies needs special attention if good classification accuracy for all the classes is sought. When the classes are not separable, i.e., when the distributions of observations in the classes overlap, it is impossible to achieve ideal accuracy for all the classes at once. We suggest a versatile multicriteria optimization formulation for imbalanced classification and demonstrate its applicability using a single hidden layer perceptron as the classifier model.

[1]  Bernhard Sendhoff,et al.  Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[2]  Serpil Sayin,et al.  SVM classification for imbalanced data sets using a multiobjective optimization framework , 2014, Ann. Oper. Res..

[3]  Tommi Kärkkäinen,et al.  MLP in Layer-Wise Form with Applications to Weight Decay , 2002, Neural Computation.

[4]  Pablo Moscato,et al.  Handbook of Memetic Algorithms , 2011, Studies in Computational Intelligence.

[5]  Daisuke Sasaki,et al.  Multiobjective Optimization Software , 2008, Multiobjective Optimization.

[6]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[7]  Charles Elkan,et al.  The Foundations of Cost-Sensitive Learning , 2001, IJCAI.

[8]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[9]  Yiqiang Chen,et al.  Weighted extreme learning machine for imbalance learning , 2013, Neurocomputing.

[10]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[11]  Ujjwal Maulik,et al.  A Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part I , 2014, IEEE Transactions on Evolutionary Computation.

[12]  Inés María Galván,et al.  Using Evolutionary Multiobjective Techniques for Imbalanced Classification Data , 2010, ICANN.

[13]  Seetha Hari,et al.  Learning From Imbalanced Data , 2019, Advances in Computer and Electrical Engineering.

[14]  Hussein A. Abbass,et al.  Speeding Up Backpropagation Using Multiobjective Evolutionary Algorithms , 2003, Neural Computation.

[15]  Pedro Antonio Gutiérrez,et al.  Sensitivity Versus Accuracy in Multiclass Problems Using Memetic Pareto Evolutionary Neural Networks , 2010, IEEE Transactions on Neural Networks.

[16]  Jonathan E. Fieldsend,et al.  Multi-class ROC analysis from a multi-objective optimisation perspective , 2006, Pattern Recognit. Lett..